메뉴 건너뛰기




Volumn 2286, Issue , 2002, Pages 64-75

Conversion between two multiplicatively dependent linear numeration systems

Author keywords

[No Author keywords available]

Indexed keywords

POLYNOMIALS;

EID: 23044532690     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45995-2_11     Document Type: Conference Paper
Times cited : (2)

References (18)
  • 1
    • 84937498380 scopus 로고
    • M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem numbers, Birkhȁauser
    • M.-J. Bertin, A.Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem numbers, Birkhȁauser, 1992.
    • (1992) A.Decomps-Guilloux
    • Bertin, M.-J.1
  • 2
    • 0001313992 scopus 로고
    • Développements en base de Pisot et répartition modulo 1
    • Paris
    • A. Bertrand, Développements en base de Pisot et répartition modulo 1. C.R. Acad. Sc., Paris 285 (1977), 419–421.
    • (1977) C.R. Acad. Sc. , vol.285 , pp. 419-421
    • Bertrand, A.1
  • 3
    • 0000254855 scopus 로고
    • Comment écrire les nombres entiers dans une base qui n’est pas entière
    • A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989), 237–241.
    • (1989) Acta Math. Acad. Sci. Hungar , vol.54 , pp. 237-241
    • Bertrand-Mathis, A.1
  • 4
    • 0039015677 scopus 로고    scopus 로고
    • An extension of the Cobham-Semënov Theorem
    • A. Bès, An extension of the Cobham-Semënov Theorem. Journal of Symbolic Logic 65 (2000), 201–211.
    • (2000) Journal of Symbolic Logic , vol.65 , pp. 201-211
    • Bès, A.1
  • 5
    • 70350098746 scopus 로고
    • Weak second-order arithmetic and finite automata. Z
    • J.R. Bȕuchi, Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960), 66–92.
    • (1960) Math. Logik Grundlagen Math , vol.6 , pp. 66-92
    • Bȕuchi, J.R.1
  • 6
    • 0031193143 scopus 로고    scopus 로고
    • Bertrand numeration systems and recognizability
    • V. Bruyère and G. Hansel, Bertrand numeration systems and recognizability. Theoret. Comp. Sci. 181 (1997), 17–43.
    • (1997) Theoret. Comp. Sci , vol.181 , pp. 17-43
    • Bruyère, V.1    Hansel, G.2
  • 7
    • 0000157608 scopus 로고
    • On the base-dependence of sets of numbers recognizable by finite automata
    • A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969), 186–192.
    • (1969) Math. Systems Theory , vol.3 , pp. 186-192
    • Cobham, A.1
  • 8
    • 0032379320 scopus 로고    scopus 로고
    • A generalization of Cobham’s Theorem
    • F. Durand, A generalization of Cobham’s Theorem. Theory of Computing Systems 31 (1998), 169–185.
    • (1998) Theory of Computing Systems , vol.31 , pp. 169-185
    • Durand, F.1
  • 10
    • 0001570851 scopus 로고
    • Une généralisation du théorème de Cobham
    • S. Fabre, Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994), 197–208.
    • (1994) Acta Arithm , vol.67 , pp. 197-208
    • Fabre, S.1
  • 11
    • 0000892641 scopus 로고
    • Systems of numeration. Amer
    • A.S. Fraenkel, Systems of numeration. Amer. Math. Monthly 92(2) (1985), 105–114.
    • (1985) Math. Monthly , vol.92 , Issue.2 , pp. 105-114
    • Fraenkel, A.S.1
  • 12
    • 0002389262 scopus 로고
    • Representation of numbers and finite automata
    • Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60.
    • (1992) Math. Systems Theory , vol.25 , pp. 37-60
    • Frougny, C.H.1
  • 14
    • 0005717172 scopus 로고    scopus 로고
    • Automatic conversion from Fibonacci representation to representation in base ϕ, and a generalization. Internat
    • Ch. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base ϕ, and a generalization. Internat. J. Algebra Comput. 9 (1999), 351–384.
    • (1999) J. Algebra Comput , vol.9 , pp. 351-384
    • Frougny, C.H.1    Sakarovitch, J.2
  • 15
    • 0000801634 scopus 로고    scopus 로고
    • On Representation of Integers in Linear Numeration Systems
    • Ergodic theory of Zd-Actions, edited by M. Pollicott and K. Schmidt, London, Cambridge University Press
    • Ch. Frougny and B. Solomyak, On Representation of Integers in Linear Numeration Systems, In Ergodic theory of Zd-Actions, edited by M. Pollicott and K. Schmidt, London Mathematical Society Lecture Note Series 228 (1996), Cambridge University Press, 345–368.
    • (1996) Mathematical Society Lecture Note Series , vol.228 , pp. 345-368
    • Frougny, C.H.1    Solomyak, B.2
  • 16
    • 0033433485 scopus 로고    scopus 로고
    • On the context-freeness of the θ-expansions of the integers. Internat
    • Ch. Frougny and B. Solomyak, On the context-freeness of the θ-expansions of the integers. Internat. J. Algebra Comput. 9 (1999), 347–350.
    • (1999) J. Algebra Comput , vol.9 , pp. 347-350
    • Frougny, C.H.1    Solomyak, B.2
  • 17
    • 0040341424 scopus 로고
    • Representations for real numbers and their ergodic properties
    • A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.
    • (1957) Acta Math. Acad. Sci. Hungar , vol.8 , pp. 477-493
    • Rényi, A.1
  • 18
    • 0010720433 scopus 로고
    • The Presburger nature of predicates that are regular in two number systems
    • A. L. Semënov, The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977), 289–299.
    • (1977) Siberian Math. J , vol.18 , pp. 289-299
    • Semënov, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.