-
1
-
-
33646883627
-
Regularity for minimizers of non-quadratic functionals. The case 1 < p < 2
-
Acerbi, E. and N. Fusco: Regularity for minimizers of non-quadratic functionals. The case 1 < p < 2. J. Math. Anal. Appl. 140 (1989), 115 – 135.
-
(1989)
J. Math. Anal. Appl.
, vol.140
, pp. 115-135
-
-
Acerbi, E.1
Fusco, N.2
-
2
-
-
38149147126
-
Partial regularity under anisotropic (p, q) growth conditions
-
Acerbi, E. and N. Fusco: Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Equ. 107 (1994), 46 – 67.
-
(1994)
J. Diff. Equ.
, vol.107
, pp. 46-67
-
-
Acerbi, E.1
Fusco, N.2
-
3
-
-
0003796630
-
-
New York San Francisco London: Acad. Press
-
Adams, R. A.: Sobolev Spaces. New York - San Francisco - London: Acad. Press 1975.
-
(1975)
Sobolev Spaces
-
-
Adams, R.A.1
-
4
-
-
85157133032
-
Obstacle problems with linear growth: Hölder Regularity for the dual solution
-
to appear
-
Bildhauer, M. and M. Fuchs: Obstacle problems with linear growth: Hölder Regularity for the dual solution. Math. Nachr. (to appear).
-
Math. Nachr.
-
-
Bildhauer, M.1
Fuchs, M.2
-
5
-
-
38249010450
-
Regularity for certain degenerate elliptic double obstacle problems
-
Choe, H. J.: Regularity for certain degenerate elliptic double obstacle problems. J. Math. Anal. Appl. 169 (1992), 111 – 126.
-
(1992)
J. Math. Anal. Appl.
, vol.169
, pp. 111-126
-
-
Choe, H.J.1
-
6
-
-
0039598027
-
On the obstacle problem for quasilinear elliptic equations of p-Laplace type
-
Choe, H. J. and J. L. Lewis: On the obstacle problem for quasilinear elliptic equations of p-Laplace type. SIAM J. Math. Anal. 22 (1991), 623 – 638.
-
(1991)
SIAM J. Math. Anal.
, vol.22
, pp. 623-638
-
-
Choe, H.J.1
Lewis, J.L.2
-
7
-
-
85165774072
-
Regularity results for minimizers of irregular integrals with (p,q)-growth
-
to appear
-
Esposito, L., Leonetti, F. and G. Mingione: Regularity results for minimizers of irregular integrals with (p,q)-growth. Forum Math. (to appear).
-
Forum Math
-
-
Esposito, L.1
Leonetti, F.2
Mingione, G.3
-
8
-
-
0039597955
-
Partial regularity for minimizers of convex integrals with Llog L-growth
-
Esposito, L. and G. Mingione: Partial regularity for minimizers of convex integrals with Llog L-growth. Nonlin. Diff. Equ. Appl. 7 (2000), 157 – 175.
-
(2000)
Nonlin. Diff. Equ. Appl.
, vol.7
, pp. 157-175
-
-
Esposito, L.1
Mingione, G.2
-
9
-
-
0000091585
-
Regularity results for anisotropic image segmentation models
-
Fonseca I. and N. Fusco: Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Sup. Pisa 24 (1997), 463 – 499.
-
(1997)
Ann. Sc. Norm. Sup. Pisa
, vol.24
, pp. 463-499
-
-
Fonseca, I.1
Fusco, N.2
-
10
-
-
38249019515
-
Hölder continuity of the gradient for degenerate variational inequalities
-
Fuchs, M.: Hölder continuity of the gradient for degenerate variational inequalities. Nonlin. Anal. TMA 15 (1990), 85 – 100.
-
(1990)
Nonlin. Anal. TMA
, vol.15
, pp. 85-100
-
-
Fuchs, M.1
-
12
-
-
0040225049
-
Variational inequalities for energy functionals with nonstandard growth conditions
-
Nos
-
Fuchs, M. and G. Li: Variational inequalities for energy functionals with nonstandard growth conditions. Abstr. Appl. Anal. 3, Nos.1–2 (1998), 41–64.
-
(1998)
Abstr. Appl. Anal.
, vol.3
, Issue.1-2
, pp. 41-64
-
-
Fuchs, M.1
Li, G.2
-
13
-
-
0034393549
-
1,α-regularity for free and constrained local minimizers of variational integrals with nearly linear growth
-
1,α-regularity for free and constrained local minimizers of variational integrals with nearly linear growth. Manus. Math. 102 (2000), 227 – 250.
-
(2000)
Manus. Math.
, vol.102
, pp. 227-250
-
-
Fuchs, M.1
Mingione, G.2
-
14
-
-
0003650457
-
-
A Wiley-Intersci. Publ. Pure and Applied Mathematics). New York: J. Wiley & Sons
-
Friedman, A.: Variational principles and free-boundary problems (A Wiley-Intersci. Publ. Pure and Applied Mathematics). New York: J. Wiley & Sons 1982.
-
(1982)
Variational principles and free-boundary problems
-
-
Friedman, A.1
-
15
-
-
0010122911
-
A regularity theory for variational integrals with L log L-growth
-
Fuchs, M. and G. Seregin: A regularity theory for variational integrals with L log L-growth. Calc. Var. 6 (1998), 171 – 187.
-
(1998)
Calc. Var.
, vol.6
, pp. 171-187
-
-
Fuchs, M.1
Seregin, G.2
-
16
-
-
0033096821
-
Variational models for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening
-
Fuchs, M. and G. Seregin: Variational models for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math. Meth. Appl. Sci. 22 (1999), 317 – 351.
-
(1999)
Math. Meth. Appl. Sci.
, vol.22
, pp. 317-351
-
-
Fuchs, M.1
Seregin, G.2
-
17
-
-
0003369281
-
Variational methods for problems from plasticity theory and for generalized Newtonian fluids
-
Fuchs, M. and G. Seregin: Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lect. Notes Math. 1749 (2000).
-
(2000)
Lect. Notes Math.
, vol.1749
-
-
Fuchs, M.1
Seregin, G.2
-
18
-
-
22044431678
-
Variational integrals on Orlicz-Sobolev spaces
-
Fuchs, M. and V. Osmolovski: Variational integrals on Orlicz-Sobolev spaces. Z. Anal. Anw. 17 (1998), 393 – 415.
-
(1998)
Z. Anal. Anw.
, vol.17
, pp. 393-415
-
-
Fuchs, M.1
Osmolovski, V.2
-
20
-
-
0000081267
-
Functionals with linear growth in the calculus of variations
-
Giaquinta, M., Modica, G. and J. Souček: Functionals with linear growth in the calculus of variations. Comm. Math. Univ. Carolinae 20 (1979), 143 – 171.
-
(1979)
Comm. Math. Univ. Carolinae
, vol.20
, pp. 143-171
-
-
Giaquinta, M.1
Modica, G.2
Souček, J.3
-
22
-
-
38249027835
-
Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity
-
Lindqvist, P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlin. Anal. 12 (1988), 1245 – 1255.
-
(1988)
Nonlin. Anal.
, vol.12
, pp. 1245-1255
-
-
Lindqvist, P.1
-
23
-
-
0005552179
-
Regularity of solutions to some degenerate double obstacle problems
-
Lieberman, G.: Regularity of solutions to some degenerate double obstacle problems. Indiana Univ. Math. J. 40 (1991), 1009 – 1028.
-
(1991)
Indiana Univ. Math. J.
, vol.40
, pp. 1009-1028
-
-
Lieberman, G.1
-
24
-
-
0001196870
-
Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions
-
Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989), 267 – 284.
-
(1989)
Arch. Rat. Mech. Anal.
, vol.105
, pp. 267-284
-
-
Marcellini, P.1
-
25
-
-
0001812746
-
Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions
-
Marcellini, P.: Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions. J. Diff. Equ. 90 (1991), 1 – 30.
-
(1991)
J. Diff. Equ.
, vol.90
, pp. 1-30
-
-
Marcellini, P.1
-
26
-
-
38249000043
-
Regularity for elliptic equations with general growth conditions
-
Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Diff. Equ. 105 (1993), 296 – 333.
-
(1993)
J. Diff. Equ.
, vol.105
, pp. 296-333
-
-
Marcellini, P.1
-
27
-
-
84939899331
-
Everywhere regularity for a class of elliptic systems without growth conditions
-
Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996), 1 – 25.
-
(1996)
Ann. Scuola Norm. Sup. Pisa
, vol.23
, pp. 1-25
-
-
Marcellini, P.1
-
28
-
-
38249039307
-
Interior regularity for solutions to obstacle problems
-
Michael, J. and W. Ziemer: Interior regularity for solutions to obstacle problems. Nonlin. Anal. 10 (1986), 1427 – 1448.
-
(1986)
Nonlin. Anal.
, vol.10
, pp. 1427-1448
-
-
Michael, J.1
Ziemer, W.2
-
29
-
-
0346924349
-
1,α regularity for minimizers of integral functionals with Llog L growth
-
1,α regularity for minimizers of integral functionals with Llog L growth. Z. Anal. Anw. 18 (1999), 1083 – 1100.
-
(1999)
Z. Anal. Anw.
, vol.18
, pp. 1083-1100
-
-
Mingione, G.1
Siepe, F.2
-
30
-
-
84932306438
-
Multiple Integrals in the Calculus of Variations (Grundlehren der math
-
Berlin Heidelberg New York: Springer
-
Morrey, C. B.: Multiple Integrals in the Calculus of Variations (Grundlehren der math. Wiss. in Einzeldarstellungen: Band 130). Berlin - Heidelberg - New York: Springer 1966.
-
(1966)
Wiss. in Einzeldarstellungen: Band 130)
-
-
Morrey, C.B.1
-
31
-
-
0041192686
-
Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations
-
Mu, J. and W. P. Ziemer: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations. Comm. Part.Diff.Equ. 16 (1991), 821 – 843.
-
(1991)
Comm. Part.Diff.Equ.
, vol.16
, pp. 821-843
-
-
Mu, J.1
Ziemer, W.P.2
-
32
-
-
85165792135
-
Hölder continuity of the gradient of solutions to double obstacle problems involving degenerate elliptic equations (in Chinese; with English summary)
-
Yan, X.: Hölder continuity of the gradient of solutions to double obstacle problems involving degenerate elliptic equations (in Chinese; with English summary). J. China Univ. Sci. Technol. 26 (1996), 210 – 219.
-
(1996)
J. China Univ. Sci. Technol.
, vol.26
, pp. 210-219
-
-
Yan, X.1
|