-
1
-
-
0032165818
-
On the numerical analysis of finite element and Dirichlet-to-Neumann methods for nonlinear exterior transmission problems
-
G. R. Barrenechea, M. A. Barrientos and G. N. Gatica. On the numerical analysis of finite element and Dirichlet-to-Neumann methods for nonlinear exterior transmission problems. Numer. Funct. Analysis Optimiz. 19 (1998), 705-735.
-
(1998)
Numer. Funct. Analysis Optimiz.
, vol.19
, pp. 705-735
-
-
Barrenechea, G.R.1
Barrientos, M.A.2
Gatica, G.N.3
-
2
-
-
0032298986
-
Weak solvability of interior transmission problems via mixed finite elements and Dirichlet-to-Neumann mappings
-
G. R. Barrenechea, G. N. Gatica and G. C. Hsiao. Weak solvability of interior transmission problems via mixed finite elements and Dirichlet-to-Neumann mappings. J. Comput. Appl. Math. 100 (1998), 145-160.
-
(1998)
J. Comput. Appl. Math.
, vol.100
, pp. 145-160
-
-
Barrenechea, G.R.1
Gatica, G.N.2
Hsiao, G.C.3
-
3
-
-
84971145280
-
Solution of a boundary value problem for the Helmholtz equation via variation of the boundary into the complex domain
-
O. P. Bruno and F. Reitich. Solution of a boundary value problem for the Helmholtz equation via variation of the boundary into the complex domain. Proc. R. Soc. Edinb. A 122 (1992), 317-340.
-
(1992)
Proc. R. Soc. Edinb. A
, vol.122
, pp. 317-340
-
-
Bruno, O.P.1
Reitich, F.2
-
4
-
-
0027610033
-
Numerical solution of diffraction problems: A method of variation of boundaries
-
O. P. Bruno and F. Reitich. Numerical solution of diffraction problems: a method of variation of boundaries. J. Opt. Soc. Am. A 10 (1993), 1168-1175.
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 1168-1175
-
-
Bruno, O.P.1
Reitich, F.2
-
5
-
-
0027687215
-
Numerical solution of diffraction problems: Finitely conducting gratings, Padé approximants, and singularities
-
O. P. Bruno and F. Reitich. Numerical solution of diffraction problems: finitely conducting gratings, Padé approximants, and singularities. J. Opt. Soc. Am. A 10 (1993), 2307-2316.
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2307-2316
-
-
Bruno, O.P.1
Reitich, F.2
-
6
-
-
0027760653
-
Numerical solution of diffraction problems: Doubly periodic gratings
-
O. P. Bruno and F. Reitich. Numerical solution of diffraction problems: doubly periodic gratings. J. Opt. Soc. Am. A 10 (1993), 2551-2562.
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2551-2562
-
-
Bruno, O.P.1
Reitich, F.2
-
7
-
-
0017332471
-
Cauchy integrals on Lipschitz curves and related operators
-
A. P. Calderón. Cauchy integrals on Lipschitz curves and related operators. Proc. Natl Acad. Sci. USA 75 (1977), 1324-1327.
-
(1977)
Proc. Natl Acad. Sci. USA
, vol.75
, pp. 1324-1327
-
-
Calderón, A.P.1
-
8
-
-
0002592298
-
Nonlinear harmonic analysis and analytic dependence
-
Providence, PA: American Mathematical Society
-
R. Coifman and Y. Meyer. Nonlinear harmonic analysis and analytic dependence. In Pseudodifferential operators and applications, pp. 71-78 (Providence, PA: American Mathematical Society, 1985).
-
(1985)
Pseudodifferential Operators and Applications
, pp. 71-78
-
-
Coifman, R.1
Meyer, Y.2
-
9
-
-
0034550889
-
Traveling two and three dimensional capillary gravity water waves
-
W. Craig and D. P. Nicholls. Traveling two and three dimensional capillary gravity water waves. SIAM J. Math. Analysis 32 (2000), 323-359.
-
(2000)
SIAM J. Math. Analysis
, vol.32
, pp. 323-359
-
-
Craig, W.1
Nicholls, D.P.2
-
11
-
-
0002686768
-
Numerical simulation of gravity waves
-
W. Craig and C. Sulem. Numerical simulation of gravity waves. J. Comput. Phys. 108 (1993), 73-83.
-
(1993)
J. Comput. Phys.
, vol.108
, pp. 73-83
-
-
Craig, W.1
Sulem, C.2
-
12
-
-
0001654990
-
The modulation regime of three-dimensional water waves and the Davey-Stewartson system
-
W. Craig, U. Schanz and C. Sulem. The modulation regime of three-dimensional water waves and the Davey-Stewartson system. Annls Inst. H. Poincaré Analyse Non Linéaire 14 (1997), 615-667.
-
(1997)
Annls Inst. H. Poincaré Analyse Non Linéaire
, vol.14
, pp. 615-667
-
-
Craig, W.1
Schanz, U.2
Sulem, C.3
-
13
-
-
0023148497
-
A high-order spectral method for the study of nonlinear gravity waves
-
D. G. Dommermuth and D. K. P. Yue. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184 (1987), 267-288.
-
(1987)
J. Fluid Mech.
, vol.184
, pp. 267-288
-
-
Dommermuth, D.G.1
Yue, D.K.P.2
-
14
-
-
0242588180
-
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth
-
A. Friedman and F. Reitich. Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353 (2001), 1587-1634.
-
(2001)
Trans. Am. Math. Soc.
, vol.353
, pp. 1587-1634
-
-
Friedman, A.1
Reitich, F.2
-
15
-
-
0003499994
-
-
C. Godrèche (ed.). Cambridge University Press
-
C. Godrèche (ed.). Solids far from equilibrium (Cambridge University Press, 1992).
-
(1992)
Solids Far from Equilibrium
-
-
-
16
-
-
0000886748
-
Nonreflecting boundary conditions for Maxwell's equations
-
M. J. Grote and J. B. Keller. Nonreflecting boundary conditions for Maxwell's equations. J. Comput. Phys. 139 (1998), 327-342.
-
(1998)
J. Comput. Phys.
, vol.139
, pp. 327-342
-
-
Grote, M.J.1
Keller, J.B.2
-
17
-
-
0000271460
-
Exact nonreflecting boundary conditions
-
J. B. Keller and D. Givoli. Exact nonreflecting boundary conditions. J. Comput. Phys. 82 (1989), 172-192.
-
(1989)
J. Comput. Phys.
, vol.82
, pp. 172-192
-
-
Keller, J.B.1
Givoli, D.2
-
20
-
-
0001442989
-
Traveling water waves: Spectral continuation methods with parallel implementation
-
D. P. Nicholls. Traveling water waves: spectral continuation methods with parallel implementation. J. Comput. Phys. 143 (1998), 224-240.
-
(1998)
J. Comput. Phys.
, vol.143
, pp. 224-240
-
-
Nicholls, D.P.1
-
23
-
-
34250447917
-
Stability of periodic waves of finite amplitude on the surface of a deep fluid
-
V. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968), 190-194.
-
(1968)
J. Appl. Mech. Tech. Phys.
, vol.9
, pp. 190-194
-
-
Zakharov, V.1
|