메뉴 건너뛰기




Volumn 1988, Issue , 2001, Pages 414-422

Topology optimization of conductive media described by maxwell’s equations

Author keywords

Interior point method; Maxwell s equations; Nonlinear programming; Primal dual approach; Topology optimization

Indexed keywords

CONSTRAINT THEORY; ENERGY DISSIPATION; MAXWELL EQUATIONS; NEWTON-RAPHSON METHOD; NONLINEAR PROGRAMMING; SHAPE OPTIMIZATION; TOPOLOGY;

EID: 23044526892     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45262-1_48     Document Type: Conference Paper
Times cited : (3)

References (12)
  • 2
    • 0000669478 scopus 로고    scopus 로고
    • Adaptive miltilevel methods for edge element discretizations of Maxwell’s equations
    • Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R. H. W., Wohlmuth, B.: Adaptive miltilevel methods for edge element discretizations of Maxwell’s equations. Surveys of Math. in Industry, 8 (1999) 271-312.
    • (1999) Surveys of Math. In Industry , vol.8 , pp. 271-312
    • Beck, R.1    Deuflhard, P.2    Hiptmair, R.3    Hoppe, R.4    Wohlmuth, B.5
  • 5
    • 0032358968 scopus 로고    scopus 로고
    • Primal–dual interior methods for nonconvex nonlinear programming
    • Forsgen, A., Gill, P.: Primal–dual interior methods for nonconvex nonlinear programming. SIAM Journal on Optimization, 8 (1998) 1132-1152.
    • (1998) SIAM Journal on Optimization , vol.8 , pp. 1132-1152
    • Forsgen, A.1    Gill, P.2
  • 7
    • 0033351936 scopus 로고    scopus 로고
    • Mortar edge elements in R 3. East–West
    • Hoppe, R. H. W.: Mortar edge elements in R 3. East–West J. Numer. Anal., 7 (1999) 159-173.
    • (1999) J. Numer. Anal. , vol.7 , pp. 159-173
    • Hoppe, R.1
  • 10
    • 0026881062 scopus 로고
    • Analysis of finite element method for Maxwell’s equations
    • Monk, P.: Analysis of finite element method for Maxwell’s equations. SIAM J. Numer. Anal., 29 (1992) 714-729.
    • (1992) SIAM J. Numer. Anal. , vol.29 , pp. 714-729
    • Monk, P.1
  • 11
    • 0002801220 scopus 로고
    • On the convergence of multigrid methods with transforming smoothers. Theory with applications to the Navier–Stokes equations
    • Wittum, G.: On the convergence of multigrid methods with transforming smoothers. Theory with applications to the Navier–Stokes equations. Numer. Math., 57 (1989) 15-38.
    • (1989) Numer. Math. , vol.57 , pp. 15-38
    • Wittum, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.