메뉴 건너뛰기




Volumn 51, Issue 1, 2001, Pages 213-224

Strong reflexivity of abelian groups

Author keywords

Continuous convergence; Convergence group; ech complete group; Dual group; K group; K space; Pontryagin duality theorem; Reflexive group; Strong reflexive group

Indexed keywords


EID: 23044525904     PISSN: 00114642     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1013730527108     Document Type: Article
Times cited : (4)

References (14)
  • 1
    • 0003208315 scopus 로고
    • Additive Subgroups of Topological Vector Spaces
    • Springer-Verlag, Berlin-Heidelberg-New York
    • W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics 1466. Springer-Verlag, Berlin-Heidelberg-New York, 1991.
    • (1991) Lecture Notes in Mathematics , vol.1466
    • Banaszczyk, W.1
  • 2
    • 0041393013 scopus 로고
    • Continuous Convergence in C(X)
    • Springer-Verlag, Berlin-Heidelberg-New York
    • E. Binz: Continuous Convergence in C(X). Lecture Notes in Mathematics 469. Springer-Verlag, Berlin-Heidelberg-New York, 1975.
    • (1975) Lecture Notes in Mathematics , vol.469
    • Binz, E.1
  • 3
    • 84975960701 scopus 로고
    • Countable products and sums of lines and circles: Their closed subgroups, quotients and duality properties
    • R. Brown, P. J. Higgins and S. A. Morris: Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties. Math. Proc. Camb. Phil. Soc. 78 (1975), 19-32.
    • (1975) Math. Proc. Camb. Phil. Soc. , vol.78 , pp. 19-32
    • Brown, R.1    Higgins, P.J.2    Morris, S.A.3
  • 4
    • 15944367963 scopus 로고
    • Pontryagin duality for convergence groups of unimodular continuous functions
    • H. P. Butzmann: Pontryagin duality for convergence groups of unimodular continuous functions. Czechoslovak Math. J. 33 (1983), 212-220.
    • (1983) Czechoslovak Math. J. , vol.33 , pp. 212-220
    • Butzmann, H.P.1
  • 6
    • 0032221011 scopus 로고    scopus 로고
    • Pontryagin duality for metrizable groups
    • M. J. Chasco: Pontryagin duality for metrizable groups. Arch. Math. 70 (1998), 22-28.
    • (1998) Arch. Math. , vol.70 , pp. 22-28
    • Chasco, M.J.1
  • 7
    • 0010104931 scopus 로고
    • Binz-Butzmann duality versus Pontryagin duality
    • M. J. Chasco and E. Martín-Peinador: Binz-Butzmann duality versus Pontryagin duality. Arch. Math. 63 (1994), 264-270.
    • (1994) Arch. Math. , vol.63 , pp. 264-270
    • Chasco, M.J.1    Martín-Peinador, E.2
  • 8
    • 0039542371 scopus 로고
    • On equicontinuity and continuous convergence
    • C. H. Cook and H. R. Fischer. On equicontinuity and continuous convergence. Math. Ann. 159 (1965), 94-104.
    • (1965) Math. Ann. , vol.159 , pp. 94-104
    • Cook, C.H.1    Fischer, H.R.2
  • 9
    • 0000980291 scopus 로고
    • Limesräume
    • H. R. Fischer: Limesräume. Math. Ann. 137 (1959), 269-303.
    • (1959) Math. Ann. , vol.137 , pp. 269-303
    • Fischer, H.R.1
  • 10
    • 0000142226 scopus 로고
    • Extensions of the Pontryagin duality I: Infinite products
    • S. Kaplan: Extensions of the Pontryagin duality I: Infinite products. B. G. Duke Math. 15 (1948), 649-658.
    • (1948) B. G. Duke Math. , vol.15 , pp. 649-658
    • Kaplan, S.1
  • 11
    • 27144510862 scopus 로고
    • Bemerkung zu einem Satz von S. Kaplan
    • H. Leptin: Bemerkung zu einem Satz von S. Kaplan. B. G. Arch. der Math. 6 (1955), 264-268.
    • (1955) B. G. Arch. der Math. , vol.6 , pp. 264-268
    • Leptin, H.1
  • 12
    • 21844502765 scopus 로고
    • A reflexive admissible topological group must be locally compact
    • E. Martín-Peinador: A reflexive admissible topological group must be locally compact. Proc. Amer. Math. Soc. 123 (1995), 3563-3566.
    • (1995) Proc. Amer. Math. Soc. , vol.123 , pp. 3563-3566
    • Martín-Peinador, E.1
  • 13
    • 0000067766 scopus 로고
    • K-groups and duality
    • N. Noble: K-groups and duality. Trans. Amer. Math. Soc. 151 (1970), 551-561.
    • (1970) Trans. Amer. Math. Soc. , vol.151 , pp. 551-561
    • Noble, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.