-
1
-
-
0002244620
-
Decay of solutions of some nonlinear wave equations
-
C. J. Amick, J. L. Bona and M. E. Schonbek. Decay of solutions of some nonlinear wave equations. J. Diff. Eqns 81 (1989), 1-49.
-
(1989)
J. Diff. Eqns
, vol.81
, pp. 1-49
-
-
Amick, C.J.1
Bona, J.L.2
Schonbek, M.E.3
-
2
-
-
0000886844
-
Asymptotic behavior in time of solutions to some equations generalizing the Korteweg-de Vries-Burgers equation
-
P. Biler. Asymptotic behavior in time of solutions to some equations generalizing the Korteweg-de Vries-Burgers equation. Bull. Polish Acad. Sci. Math. 32 (1984), 275-282.
-
(1984)
Bull. Polish Acad. Sci. Math.
, vol.32
, pp. 275-282
-
-
Biler, P.1
-
3
-
-
0001068773
-
More results on the decay of the solutions to nonlinear, dispersive wave equations
-
J. L. Bona and L. Luo. More results on the decay of the solutions to nonlinear, dispersive wave equations. Discrete Continuous Dynamical Sys. 1 (1995), 151-193.
-
(1995)
Discrete Continuous Dynamical Sys.
, vol.1
, pp. 151-193
-
-
Bona, J.L.1
Luo, L.2
-
4
-
-
0000055286
-
Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations
-
J. L. Bona, K. S. Promislow and C. E. Wayne. Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8 (1995), 1179-1206.
-
(1995)
Nonlinearity
, vol.8
, pp. 1179-1206
-
-
Bona, J.L.1
Promislow, K.S.2
Wayne, C.E.3
-
5
-
-
0010598197
-
Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation
-
D. B. Dix. Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation. J. Diff. Eqns 90 (1991), 238-287.
-
(1991)
J. Diff. Eqns
, vol.90
, pp. 238-287
-
-
Dix, D.B.1
-
6
-
-
0000575157
-
The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity
-
D. B. Dix. The dissipation of nonlinear dispersive waves: the case of asymptotically weak nonlinearity. Commun. PDE 17 (1992), 1665-1693.
-
(1992)
Commun. PDE
, vol.17
, pp. 1665-1693
-
-
Dix, D.B.1
-
7
-
-
17844377454
-
Large-time behavior of solutions of linear dispersive equations
-
Springer
-
D. B. Dix. Large-time behavior of solutions of linear dispersive equations. Lecture Notes in Mathematics, vol. 1668 (Springer, 1997).
-
(1997)
Lecture Notes in Mathematics
, vol.1668
-
-
Dix, D.B.1
-
8
-
-
0002791373
-
Asymptotic behavior of positive solutions of a nonlinear heat equation
-
M. Escobedo and O. Kavian. Asymptotic behavior of positive solutions of a nonlinear heat equation. Houston J. Math. 13 (1987), 39-50.
-
(1987)
Houston J. Math.
, vol.13
, pp. 39-50
-
-
Escobedo, M.1
Kavian, O.2
-
10
-
-
0000470675
-
Asymptotic behavior of nonlinear parabolic equations with critical exponents. A dynamical systems approach
-
V. A. Galaktionov and J. L. Vazquez. Asymptotic behavior of nonlinear parabolic equations with critical exponents. A dynamical systems approach. J. Funct. Analysis 100 (1991), 435-462.
-
(1991)
J. Funct. Analysis
, vol.100
, pp. 435-462
-
-
Galaktionov, V.A.1
Vazquez, J.L.2
-
11
-
-
0001596614
-
On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation
-
V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskij. On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation. Math. USSR Sbornik 126 (1985), 435-472.
-
(1985)
Math. USSR Sbornik
, vol.126
, pp. 435-472
-
-
Galaktionov, V.A.1
Kurdyumov, S.P.2
Samarskij, A.A.3
-
12
-
-
0001226214
-
Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation
-
Y. Giga and T. Kambe. Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117 (1988), 549-568.
-
(1988)
Commun. Math. Phys.
, vol.117
, pp. 549-568
-
-
Giga, Y.1
Kambe, T.2
-
13
-
-
0039768823
-
The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods
-
J. Ginibre and G. Velo. The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods. Commun. Math. Phys. 187 (1997), 45-79.
-
(1997)
Commun. Math. Phys.
, vol.187
, pp. 45-79
-
-
Ginibre, J.1
Velo, G.2
-
15
-
-
0001634292
-
On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension
-
N. Hayashi, E. I. Kaikina and P. I. Naumkin. On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension. Hokkaido Math. J. 27 (1998), 651-667.
-
(1998)
Hokkaido Math. J.
, vol.27
, pp. 651-667
-
-
Hayashi, N.1
Kaikina, E.I.2
Naumkin, P.I.3
-
16
-
-
51249178019
-
Large time behavior of solutions of the porous media equation with absorption
-
S. Kamin and L. A. Peletier. Large time behavior of solutions of the porous media equation with absorption. Israel J. Math. 55 (1986), 129-146.
-
(1986)
Israel J. Math.
, vol.55
, pp. 129-146
-
-
Kamin, S.1
Peletier, L.A.2
-
17
-
-
0001192857
-
Nonlinear stability of shock waves for viscous conservation laws
-
T. P. Liu. Nonlinear stability of shock waves for viscous conservation laws. Mem. Am. Math. Soc. 56 (1985), 1-108.
-
(1985)
Mem. Am. Math. Soc.
, vol.56
, pp. 1-108
-
-
Liu, T.P.1
-
18
-
-
0000753726
-
Asymptotic relationship as t → ∞ between solutions to some nonlinear equations. I, II
-
P. I. Naumkin and I. A. Shishmarev. Asymptotic relationship as t → ∞ between solutions to some nonlinear equations. I, II. Diff. Eqns 30 (1994), 806-814; 1329-1340.
-
(1994)
Diff. Eqns
, vol.30
, pp. 806-814
-
-
Naumkin, P.I.1
Shishmarev, I.A.2
-
19
-
-
0003297871
-
Nonlinear nonlocal equations in the theory of waves
-
Providence, RI: American Mathematical Society
-
P. I. Naumkin and I. A. Shishmarev. Nonlinear nonlocal equations in the theory of waves. Translations of Mathematical Monographs, vol. 133 (Providence, RI: American Mathematical Society, 1994).
-
(1994)
Translations of Mathematical Monographs
, vol.133
-
-
Naumkin, P.I.1
Shishmarev, I.A.2
-
20
-
-
33746567577
-
Asymptotic representation of surface waves in the form of two traveling Burgers waves
-
P. I. Naumkin and I. A. Shishmarev. Asymptotic representation of surface waves in the form of two traveling Burgers waves. Funct. Analysis Appl. 29 (1995), 168-179.
-
(1995)
Funct. Analysis Appl.
, vol.29
, pp. 168-179
-
-
Naumkin, P.I.1
Shishmarev, I.A.2
-
21
-
-
0000999183
-
Uniform decay rates for parabolic conservation laws
-
M. E. Schonbek. Uniform decay rates for parabolic conservation laws. Nonlinear Analysis TMA 10 (1986), 943-953.
-
(1986)
Nonlinear Analysis TMA
, vol.10
, pp. 943-953
-
-
Schonbek, M.E.1
-
22
-
-
84968480726
-
Lower bounds of rates of decay for solutions to the Navier-Stokes equations
-
M. E. Schonbek. Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Am. Math. Soc. 4 (1991), 423-449.
-
(1991)
J. Am. Math. Soc.
, vol.4
, pp. 423-449
-
-
Schonbek, M.E.1
-
24
-
-
0002508662
-
Decay estimates for the solutions of some nonlinear evolution equations
-
L. Zhang. Decay estimates for the solutions of some nonlinear evolution equations. J. Diff. Eqns 116 (1995), 31-58.
-
(1995)
J. Diff. Eqns
, vol.116
, pp. 31-58
-
-
Zhang, L.1
-
25
-
-
0002134025
-
A dynamical system approach to the self-similar large time behavior in scalar convection-diffusion equations
-
E. Zuazua. A dynamical system approach to the self-similar large time behavior in scalar convection-diffusion equations. J. Diff. Eqns 108 (1994), 1-35.
-
(1994)
J. Diff. Eqns
, vol.108
, pp. 1-35
-
-
Zuazua, E.1
|