메뉴 건너뛰기




Volumn 2, Issue 3, 2000, Pages 373-383

A note on the stability of stationary solutions to a system of chemotaxis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 23044518452     PISSN: 02191997     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (21)
  • 1
    • 0000657461 scopus 로고    scopus 로고
    • Local and global solvability of some parabolic systems modelling chemotaxis
    • P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998) 715-743.
    • (1998) Adv. Math. Sci. Appl. , vol.8 , pp. 715-743
    • Biler, P.1
  • 3
    • 0019784884 scopus 로고
    • Nonlinear aspects of chemotaxis
    • S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981) 217-237.
    • (1981) Math. Biosci. , vol.56 , pp. 217-237
    • Childress, S.1    Percus, J.K.2
  • 4
    • 0032445844 scopus 로고    scopus 로고
    • Global behaviour of a reaction - Diffusion system modelling chemotaxis
    • H. Gajewski and K. Zacharias, Global behaviour of a reaction - diffusion system modelling chemotaxis, Math. Nachr. 195 (1998) 77-114.
    • (1998) Math. Nachr. , vol.195 , pp. 77-114
    • Gajewski, H.1    Zacharias, K.2
  • 5
    • 0003304963 scopus 로고
    • Geometric Theory of Semilinear Parabolic Equations
    • Springer, Berlin
    • D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, Berlin (1981).
    • (1981) Lecture Notes in Math. , vol.840
    • Henry, D.1
  • 6
    • 0039712703 scopus 로고    scopus 로고
    • Singularity patterns in a chemotaxis model
    • M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996) 583-623.
    • (1996) Math. Ann. , vol.306 , pp. 583-623
    • Herrero, M.A.1    Velázquez, J.J.L.2
  • 9
    • 84966208077 scopus 로고
    • On explosions of solutions to a system of partial differential equations modelling chemotaxis
    • W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992) 819-824.
    • (1992) Trans. Amer. Math. Soc. , vol.329 , pp. 819-824
    • Jäger, W.1    Luckhaus, S.2
  • 11
    • 0014748565 scopus 로고
    • Initiation of slime mold aggregation viewd as an instability
    • E. F Keller and L. A. Segel, Initiation of slime mold aggregation viewd as an instability, J. Theor. Biol. 26 (1970) 399-415.
    • (1970) J. Theor. Biol. , vol.26 , pp. 399-415
    • Keller, E.F.1    Segel, L.A.2
  • 13
    • 0000911252 scopus 로고
    • Blow-up of radially symmetric solutions to a chemotaxis system
    • T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995) 581-601.
    • (1995) Adv. Math. Sci. Appl. , vol.5 , pp. 581-601
    • Nagai, T.1
  • 14
    • 0001205112 scopus 로고    scopus 로고
    • Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
    • T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funckcial. Ekvac. 40 (1997) 411-433.
    • (1997) Funckcial. Ekvac. , vol.40
    • Nagai, T.1    Senba, T.2    Yoshida, K.3
  • 15
    • 0015757937 scopus 로고
    • Chemotaxis, signal relaying, and aggregation morphology
    • V. Nanjundiah, Chemotaxis, signal relaying, and aggregation morphology, J. Theor. Biol. 42 (1973) 63-105.
    • (1973) J. Theor. Biol. , vol.42 , pp. 63-105
    • Nanjundiah, V.1
  • 17
    • 0001544447 scopus 로고    scopus 로고
    • Some structures of the solution set for a stationary system of chemotaxis
    • T. Senba and T. Suzuki, Some structures of the solution set for a stationary system of chemotaxis, to appear in Adv. Math. Sci. Appl.
    • Adv. Math. Sci. Appl.
    • Senba, T.1    Suzuki, T.2
  • 18
    • 57649176487 scopus 로고    scopus 로고
    • Chemotactic collapse in a parablic - Elliptic system of mathematical biology
    • T. Senba and T. Suzuki, Chemotactic collapse in a parablic - elliptic system of mathematical biology, to appear in Adv. Differential Equations.
    • Adv. Differential Equations
    • Senba, T.1    Suzuki, T.2
  • 21
    • 0001488448 scopus 로고    scopus 로고
    • Norm behavior of solutions to the parabolic system of chemotaxis
    • A. Yagi, Norm behavior of solutions to the parabolic system of chemotaxis, Math. Japon. 45 (1997) 241-265.
    • (1997) Math. Japon. , vol.45 , pp. 241-265
    • Yagi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.