-
1
-
-
0031971911
-
-
For Pauson-Khand reactions, see: (a) Geis, O.; Schmalz, H. G. Angew. Chem., Int. Ed. 1998, 37, 911-915.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 911-915
-
-
Geis, O.1
Schmalz, H.G.2
-
2
-
-
0038665161
-
-
(b) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800-1810.
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 1800-1810
-
-
Gibson, S.E.1
Stevenazzi, A.2
-
3
-
-
0001717548
-
-
(c) For Ni-catalyzed Pauson-Khand-type reactions, see: Zhang, M.; Buchwald, S. L. J. Org. Chem. 1996, 61, 4498-4499.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 4498-4499
-
-
Zhang, M.1
Buchwald, S.L.2
-
4
-
-
0000136862
-
-
(a) Camps, F.; Coll, J.; Moretó, J. M.; Torras, J. J. Org. Chem. 1989, 54, 1969-1978.
-
(1989)
J. Org. Chem.
, vol.54
, pp. 1969-1978
-
-
Camps, F.1
Coll, J.2
Moretó, J.M.3
Torras, J.4
-
5
-
-
0026552963
-
-
(b) Camps, F.; Moretó, J. M.; Pagès, Ll. Tetrahedron 1992, 48, 3147-3162.
-
(1992)
Tetrahedron
, vol.48
, pp. 3147-3162
-
-
Camps, F.1
Moretó, J.M.2
Pagès, Ll.3
-
6
-
-
0001086961
-
-
(c) Pagès, Ll.; Llebarǐa, A.; Camps, F.; Molins, E.; Miravitlles, C.; Moretó, J. M. J. Am. Chem. Soc. 1992, 114, 10449-10461.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 10449-10461
-
-
Pagès, Ll.1
Llebarǐa, A.2
Camps, F.3
Molins, E.4
Miravitlles, C.5
Moretó, J.M.6
-
9
-
-
0025019475
-
-
(a) Oppolzer, W.; Keller, T. H.; Kuo, D. L.; Pachinger, W. Tetrahedron Lett. 1990, 31, 1265-1268.
-
(1990)
Tetrahedron Lett.
, vol.31
, pp. 1265-1268
-
-
Oppolzer, W.1
Keller, T.H.2
Kuo, D.L.3
Pachinger, W.4
-
12
-
-
0142052336
-
-
Garcia-Gómez, G.; Camps, X.; Jaumà, A.; Moretó, J. M. Inorg. Chim. Acta 1999, 296/1, 94-102.
-
(1999)
Inorg. Chim. Acta
, vol.296
, Issue.1
, pp. 94-102
-
-
Garcia-Gómez, G.1
Camps, X.2
Jaumà, A.3
Moretó, J.M.4
-
13
-
-
33444459098
-
-
Protonolysis or "substitutive reduction" is one of the concurrent processes responsible for Ni oxidation: Chiusoli, G. P.; Bottaccio, G.; Cameroni, A. Chim. Ind. (Milan) 1962, 44, 131-135.
-
(1962)
Chim. Ind. (Milan)
, vol.44
, pp. 131-135
-
-
Chiusoli, G.P.1
Bottaccio, G.2
Cameroni, A.3
-
19
-
-
0000379557
-
-
(a) Farmer, P. J.; Reibenspies, J. H.; Lindahl, P. A.; Darensbourg, M. Y. J. Am. Chem. Soc. 1993, 115, 4665-4674.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 4665-4674
-
-
Farmer, P.J.1
Reibenspies, J.H.2
Lindahl, P.A.3
Darensbourg, M.Y.4
-
20
-
-
0345434809
-
-
(b) Lovecchio, F.; Gore, E. S.; Busch, D. H. J. Am. Chem. Soc. 1974, 96, 3109-3118.
-
(1974)
J. Am. Chem. Soc.
, vol.96
, pp. 3109-3118
-
-
Lovecchio, F.1
Gore, E.S.2
Busch, D.H.3
-
21
-
-
0000700297
-
-
(a) Griller, D.; Cooper, J. W.; Ingold, K. U. J. Am. Chem. Soc. 1975, 97, 4269-4275.
-
(1975)
J. Am. Chem. Soc.
, vol.97
, pp. 4269-4275
-
-
Griller, D.1
Cooper, J.W.2
Ingold, K.U.3
-
22
-
-
0028327483
-
-
(b) Cabiddu, S.; Fattuoni, C.; Lucarini, M.; Pedulli, G. F. Tetrahedron 1994, 50, 4001-4008.
-
(1994)
Tetrahedron
, vol.50
, pp. 4001-4008
-
-
Cabiddu, S.1
Fattuoni, C.2
Lucarini, M.3
Pedulli, G.F.4
-
23
-
-
0039710774
-
-
In some Ni complexes with a formally odd oxidation state for the metal, the unpaired electron is fully localized on the ligand, and the complex is Ni-silent. See, for instance: Kreisman, P.; Marsh, R.; Preer, J. R.; Gray, H. B. J. Am. Chem. Soc. 1968, 90, 1067-1068.
-
(1968)
J. Am. Chem. Soc.
, vol.90
, pp. 1067-1068
-
-
Kreisman, P.1
Marsh, R.2
Preer, J.R.3
Gray, H.B.4
-
24
-
-
33444478656
-
-
note
-
Although, initially, an excess of iodide was added only to solubilize the Ni salt as tetraiodonickelate, the presence of iodide has proven to activate the reaction and is liable to operate as well as an efficient allyl activator and/or a stabilizing ligand. Without it, the reaction proceeds sluggishly.
-
-
-
-
25
-
-
4143074756
-
-
Ikeda, S.; Sanuki, R.; Miyachi, H.; Miyashita, H.; Taniguchi, M.; Odashima, K. J. Am. Chem. Soc 2004, 126, 10331-10338.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 10331-10338
-
-
Ikeda, S.1
Sanuki, R.2
Miyachi, H.3
Miyashita, H.4
Taniguchi, M.5
Odashima, K.6
-
26
-
-
33444456622
-
-
note
-
-1 in the IR spectrum not present in the final adduct. The Mössbauer spectrum accounts for at least 85% of the dissolved iron as Fe(II). The reflux of the crude product in THF with an excess of paraformaldehyde gave 40% of 3-hydroxy-2-[5-(2-phenylcyclopent-2-enonyl)]propionic acid (one single isomer).
-
-
-
|