-
1
-
-
78149288497
-
-
chapter 12
-
R. Agrawal, M. Heikki, R. Srikant, H. Toivonen, and A. I. Verkamo. Advances in KD and DM, chapter 12, pgs 307-328. 1996.
-
(1996)
Advances in KD and DM
, pp. 307-328
-
-
Agrawal, R.1
Heikki, M.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
3
-
-
84958986420
-
Interestingness of discovered association rules in terms of neighborhood-based unexpectedness
-
G. Dong and J. Li. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD. pgs 72-86, 1998.
-
(1998)
PAKDD
, pp. 72-86
-
-
Dong, G.1
Li, J.2
-
5
-
-
84947780591
-
A metric for selection of the most promising rules
-
P. Gago and C. Bento. A metric for selection of the most promising rules. PKDD, pgs 19-27, 1998.
-
(1998)
PKDD
, pp. 19-27
-
-
Gago, P.1
Bento, C.2
-
6
-
-
0029457111
-
Mining knowledge at multiple concept levels
-
J. Han. Mining knowledge at multiple concept levels. CIKM, pgs 19-24, 1995.
-
(1995)
CIKM
, pp. 19-24
-
-
Han, J.1
-
9
-
-
78149322412
-
Principles for mining summaries using objective measures of interestingness
-
R. Hilderman and H. Hamilton. Principles for mining summaries using objective measures of interestingness. ICTAI, pgs 72-81. 2000,
-
(2000)
ICTAI
, pp. 72-81
-
-
Hilderman, R.1
Hamilton, H.2
-
10
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys, 31(3):264-323, 1999.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
12
-
-
0030643619
-
Clustering association rules
-
B. Lent, A. N. Swami, and J. Widom. Clustering association rules. ICDE, pgs 220-231, 1997.
-
(1997)
ICDE
, pp. 220-231
-
-
Lent, B.1
Swami, A.N.2
Widom, J.3
-
13
-
-
0034593061
-
Multi-level organization and summarization of discovered rules
-
B. Liu, M. Hu, and W. Hsu. Multi-level organization and summarization of discovered rules. SIGKDD, pgs 208-217, 2000.
-
(2000)
SIGKDD
, pp. 208-217
-
-
Liu, B.1
Hu, M.2
Hsu, W.3
-
14
-
-
0031162287
-
Association rules over interval data
-
R. J. Miller and Y. Yang. Association rules over interval data. SIGMOD, pgs 452-461, 1997.
-
(1997)
SIGMOD
, pp. 452-461
-
-
Miller, R.J.1
Yang, Y.2
-
15
-
-
0012952367
-
Interestingness via what is not interesting
-
S. Sahar. Interestingness via what is not interesting. SIGKDD, pgs 332-336, 1999.
-
(1999)
SIGKDD
, pp. 332-336
-
-
Sahar, S.1
-
16
-
-
8744294121
-
Interestingness preprocessing
-
S. Sahar. Interestingness preprocessing. ICDM, pgs 489-196, 2001.
-
(2001)
ICDM
, pp. 489-1196
-
-
Sahar, S.1
-
17
-
-
4544256272
-
Higher order mining: Modeling and mining the results of knowledge discovery
-
M. Spiliopoulou and J. F. Roddick. Higher order mining: Modeling and mining the results of knowledge discovery. DM-II, pgs 309-320, 2000.
-
(2000)
DM-II
, pp. 309-320
-
-
Spiliopoulou, M.1
Roddick, J.F.2
-
18
-
-
0002592397
-
Pruning and grouping discovered association rules
-
H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hätönen, and H. Mannila. Pruning and grouping discovered association rules. ECML Workshop on Statistics, Machine Learning and KDD, pgs 47-52, 1995.
-
(1995)
ECML Workshop on Statistics, Machine Learning and KDD
, pp. 47-52
-
-
Toivonen, H.1
Klemettinen, M.2
Ronkainen, P.3
Hätönen, K.4
Mannila, H.5
|