메뉴 건너뛰기




Volumn 3201, Issue , 2004, Pages 168-179

Analyzing multi-agent reinforcement learning using evolutionary dynamics

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DYNAMICS; ERROR ANALYSIS; GAME THEORY; MULTI AGENT SYSTEMS; RANDOM PROCESSES; ARTIFICIAL INTELLIGENCE; BEHAVIORAL RESEARCH; INTELLIGENT AGENTS; LEARNING ALGORITHMS; LEARNING SYSTEMS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 22944478374     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 1
    • 22944448623 scopus 로고    scopus 로고
    • Adaptive policy gradient in multiagent learning
    • B. Banerjee and J. Peng. Adaptive policy gradient in multiagent learning. In AAMAS, 2003.
    • (2003) AAMAS
    • Banerjee, B.1    Peng, J.2
  • 3
    • 4544344444 scopus 로고    scopus 로고
    • Transition-independent decentralized Markov decision problems
    • R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transition-independent decentralized Markov decision problems. In AAMAS, 2003.
    • (2003) AAMAS
    • Becker, R.1    Zilberstein, S.2    Lesser, V.3    Goldman, C.V.4
  • 4
    • 0031630561 scopus 로고    scopus 로고
    • The dynamics of reinforcement learning in cooperative multiagent systems
    • C. Claus and G. Boutilier. The dynamics of reinforcement learning in cooperative multiagent systems. In AAAI/IAAI, pages 746-752, 1998.
    • (1998) AAAI/IAAI , pp. 746-752
    • Claus, C.1    Boutilier, G.2
  • 6
    • 22944486622 scopus 로고    scopus 로고
    • Dispersion games: General definitions and some specific learning results
    • T. Grenager, R. Powers, and Y. Shoham. Dispersion games: general definitions and some specific learning results. In AAAI 2002, 2002.
    • (2002) AAAI 2002
    • Grenager, T.1    Powers, R.2    Shoham, Y.3
  • 9
    • 22944473576 scopus 로고    scopus 로고
    • Multi-agent learning in extensive games with complete information
    • P. Huang and K. Sycara. Multi-agent learning in extensive games with complete information. In AAMAS, 2003.
    • (2003) AAMAS
    • Huang, P.1    Sycara, K.2
  • 10
    • 22944491105 scopus 로고    scopus 로고
    • Performance model for large scale multiagent systems
    • H. Jung and M. Tambe. Performance model for large scale multiagent systems. In AAMAS, 2003.
    • (2003) AAMAS
    • Jung, H.1    Tambe, M.2
  • 11
    • 0012286079 scopus 로고    scopus 로고
    • An algorithm for distributed reinforcement learning in cooperative multi-agent systems
    • Morgan Kaufmann, San Francisco, CA
    • M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In Proc. 17th International Conf. on Machine Learning, pages 535-542. Morgan Kaufmann, San Francisco, CA, 2000.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 535-542
    • Lauer, M.1    Riedmiller, M.2
  • 14
    • 0034661690 scopus 로고    scopus 로고
    • Evolution of biological information
    • T. Schneider. Evolution of biological information. journal of NAR, volume 28, pages 2794 - 2799., 2000.
    • (2000) Journal of NAR , vol.28 , pp. 2794-2799
    • Schneider, T.1
  • 17
    • 22944450534 scopus 로고    scopus 로고
    • COllective INtelligence with sequences of actions
    • Lecture Notes in Artificial Intelligence, LNAI 2837. Springer
    • P. 't Hoen and S. Bohte. COllective INtelligence with sequences of actions. In 14th European Conference on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 2837. Springer, 2003.
    • (2003) 14th European Conference on Machine Learning
    • 'T Hoen, P.1    Bohte, S.2
  • 18
  • 20
    • 9444229990 scopus 로고    scopus 로고
    • Extended replicator dynamics as a key to reinforcement learning in multi-agent systems
    • Lecture Notes in Artificial Intelligence, LNAI 2837
    • K. Tuyls, D. Heytens, A. Nowe, and B. Manderick. Extended replicator dynamics as a key to reinforcement learning in multi-agent systems. In ECML, Lecture Notes in Artificial Intelligence, LNAI 2837, 2003.
    • (2003) ECML
    • Tuyls, K.1    Heytens, D.2    Nowe, A.3    Manderick, B.4
  • 21
    • 1142268235 scopus 로고    scopus 로고
    • A selection-mutation model for Q-learning in multi-agent systems
    • The ACM International Conference Proceedings Series
    • K. Tuyls, K. Verbeeck, and T. Lenaerts. A selection-mutation model for Q-learning in multi-agent systems. In AAMAS, The ACM International Conference Proceedings Series, 2003.
    • (2003) AAMAS
    • Tuyls, K.1    Verbeeck, K.2    Lenaerts, T.3
  • 22
    • 34249833101 scopus 로고
    • Q-learning
    • Watkins and Dayan. Q-learning. Machine Learning, 8:279-292, 1992.
    • (1992) Machine Learning , vol.8 , pp. 279-292
    • Watkins1    Dayan2
  • 24
    • 0001309161 scopus 로고    scopus 로고
    • Optimal payoff functions for members of collectives
    • D. Wolpert and K. Tumer. Optimal payoff functions for members of collectives. Advances in Complex Systems, 4(2/3):265-279, 2001.
    • (2001) Advances in Complex Systems , vol.4 , Issue.2-3 , pp. 265-279
    • Wolpert, D.1    Tumer, K.2
  • 26
    • 0032691530 scopus 로고    scopus 로고
    • General principles of learning-based multi-agent systems
    • O. Etzioni, J. P. Müller, and J. M. Bradshaw, editors, New York, May 1-5. ACM Press
    • D. H. Wolpert, K. R. Wheeler, and K. Turner. General principles of learning-based multi-agent systems. In O. Etzioni, J. P. Müller, and J. M. Bradshaw, editors, Proceedings of the Third Annual Conference on Autonomous Agents (AGENTS-99), pages 77-83, New York, May 1-5 1999. ACM Press.
    • (1999) Proceedings of the Third Annual Conference on Autonomous Agents (AGENTS-99) , pp. 77-83
    • Wolpert, D.H.1    Wheeler, K.R.2    Turner, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.