메뉴 건너뛰기




Volumn 3244, Issue , 2004, Pages 294-308

On the convergence speed of MDL predictions for bernoulli sequences

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; ERROR ANALYSIS; FORECASTING; LEARNING SYSTEMS; MATHEMATICAL MODELS; PROBABILITY; TURING MACHINES; ARTIFICIAL INTELLIGENCE;

EID: 22944458209     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30215-5_23     Document Type: Conference Paper
Times cited : (10)

References (15)
  • 2
    • 0029777083 scopus 로고    scopus 로고
    • Fisher information and stochastic complexity
    • Rissanen, J.J.: Fisher Information and Stochastic Complexity. IEEE Trans. on Information Theory 42 (1996) 40-47
    • (1996) IEEE Trans. on Information Theory , vol.42 , pp. 40-47
    • Rissanen, J.J.1
  • 3
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron, A.R., Rissanen, J.J., Yu, B.: The minimum description length principle in coding and modeling. IEEE Trans. on Information Theory 44 (1998) 2743-2760
    • (1998) IEEE Trans. on Information Theory , vol.44 , pp. 2743-2760
    • Barron, A.R.1    Rissanen, J.J.2    Yu, B.3
  • 5
    • 0017996595 scopus 로고
    • Complexity-based induction systems: Comparisons and convergence theorems
    • Solomonoff, R.J.: Complexity-based induction systems: comparisons and convergence theorems. IEEE Trans. Information Theory IT-24 (1978) 422-432
    • (1978) IEEE Trans. Information Theory , vol.IT-24 , pp. 422-432
    • Solomonoff, R.J.1
  • 8
    • 0031212926 scopus 로고    scopus 로고
    • Learning about the parameter of the bernoulli model
    • Vovk, V.G.: Learning about the parameter of the bernoulli model. Journal of Computer and System Sciences 55 (1997) 96-104
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 96-104
    • Vovk, V.G.1
  • 9
    • 0033877395 scopus 로고    scopus 로고
    • Minimum description length induction, Bayesianism, and Kolmogorov complexity
    • Vitányi, P.M., Li, M.: Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans. on Information Theory 46 (2000) 446-464
    • (2000) IEEE Trans. on Information Theory , vol.46 , pp. 446-464
    • Vitányi, P.M.1    Li, M.2
  • 11
    • 0006892523 scopus 로고
    • On the relation between descriptional complexity and algorithmic probability
    • Gács, P.: On the relation between descriptional complexity and algorithmic probability. Theoretical Computer Science 22 (1983) 71-93
    • (1983) Theoretical Computer Science , vol.22 , pp. 71-93
    • Gács, P.1
  • 12
    • 9444266405 scopus 로고    scopus 로고
    • Sequence prediction based on monotone complexity
    • Lecture Notes in Artificial Intelligence, Berlin, Springer
    • Hutter, M.: Sequence prediction based on monotone complexity. In: Proc. 16th Annual Conference on Learning Theory (COLT-2003). Lecture Notes in Artificial Intelligence, Berlin, Springer (2003) 506-521
    • (2003) Proc. 16th Annual Conference on Learning Theory (COLT-2003) , pp. 506-521
    • Hutter, M.1
  • 13
    • 77951203397 scopus 로고
    • The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
    • Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25 (1970) 83-124
    • (1970) Russian Mathematical Surveys , vol.25 , pp. 83-124
    • Zvonkin, A.K.1    Levin, L.A.2
  • 14
    • 22944457096 scopus 로고    scopus 로고
    • Sequential predictions based on algorithmic complexity
    • IDSIA-16-04
    • Hutter, M.: Sequential predictions based on algorithmic complexity. Technical report (2004) IDSIA-16-04.
    • (2004) Technical Report
    • Hutter, M.1
  • 15
    • 0043268070 scopus 로고    scopus 로고
    • Convergence and loss bounds for Bayesian sequence prediction
    • Hutter, M.: Convergence and loss bounds for Bayesian sequence prediction. IEEE Trans. on Information Theory 49 (2003) 2061-2067
    • (2003) IEEE Trans. on Information Theory , vol.49 , pp. 2061-2067
    • Hutter, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.