메뉴 건너뛰기




Volumn 3192, Issue , 2004, Pages 198-207

Increasing the classification accuracy of simple Bayesian classifier

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BENCHMARKING; COMPUTATIONAL METHODS; FEATURE EXTRACTION; LARGE SCALE SYSTEMS; PROBABILITY DISTRIBUTIONS; ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; DISCRETE EVENT SIMULATION;

EID: 22944455545     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30106-6_20     Document Type: Conference Paper
Times cited : (21)

References (27)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Dordrecht: Kluwer Academic Publishers
    • D. Aha, Lazy Learning, Dordrecht: Kluwer Academic Publishers, 1997.
    • (1997) Lazy Learning
    • Aha, D.1
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Machine Learning, 36 (1999): 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • C.L. Blake and C.J. Merz, UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science (1998).
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging Predictors. Machine Learning, 24 (1996): 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning, 29(1997): 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss and curse-of-dimensionality
    • J. H. Friedman, On bias, variance, 0/1-loss and curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1997): 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 12
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John, Wrappers for feature subset selection, Artificial Intelligence, 2(1997): 273-324.
    • (1997) Artificial Intelligence , vol.2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 16
    • 0008155075 scopus 로고    scopus 로고
    • Searching for dependencies in Bayesian classifiers
    • Lecture Notes in Statistics, Springer-Verlag: New York
    • M. Pazzani, Searching for dependencies in Bayesian classifiers. Artificial Intelligence and Statistics IV, Lecture Notes in Statistics, Springer-Verlag: New York, 1997.
    • (1997) Artificial Intelligence and Statistics IV
    • Pazzani, M.1
  • 17
    • 0001171722 scopus 로고    scopus 로고
    • Using sparseness and analytic QP to speed training of support vector machines
    • M. S. Kearns, S. A. Solla, and D. A. Cohn (Eds.), MA: MIT Press
    • J. Platt, Using sparseness and analytic QP to speed training of support vector machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn (Eds.), Advances in neural information processing systems 11, MA: MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Platt, J.1
  • 20
    • 0242498509 scopus 로고    scopus 로고
    • Feature selection for the Naive Bayesian classifier using decision trees
    • C. Ratanamahatana and D. Gunopulos, Feature Selection for the Naive Bayesian Classifier using Decision Trees, Applied Artificial Intelligence, 17 (2003): 475-487.
    • (2003) Applied Artificial Intelligence , vol.17 , pp. 475-487
    • Ratanamahatana, C.1    Gunopulos, D.2
  • 22
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, Data Mining and Knowledge Discovery, 1(1997): 317-328.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.1
  • 24
    • 84947742420 scopus 로고    scopus 로고
    • Improving the performance of boosting for Naive Bayesian classification
    • N. Zhong and L. Zhou (Eds.): PAKDD'99
    • K. Ting and Z. Zheng,. Improving the Performance of Boosting for Naive Bayesian Classification, N. Zhong and L. Zhou (Eds.): PAKDD'99, LNAI 1574, pp. 296-305, 1999.
    • (1999) LNAI , vol.1574 , pp. 296-305
    • Ting, K.1    Zheng, Z.2
  • 25
    • 78650176398 scopus 로고    scopus 로고
    • Feature selection for ensembles of simple Bayesian classifiers
    • Lyon, June 27-29
    • Tsymbal, S. Puuronen and D. Patterson, Feature Selection for Ensembles of Simple Bayesian Classifiers, In Proceedings of ISMIS (2002): 592-600, Lyon, June 27-29.
    • (2002) Proceedings of ISMIS , pp. 592-600
    • Tsymbal1    Puuronen, S.2    Patterson, D.3
  • 27
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Z. Zheng, and G.I. Webb, Lazy learning of Bayesian rules. Machine Learning, 41 (2000): 53-84
    • (2000) Machine Learning , vol.41 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.