메뉴 건너뛰기




Volumn 75, Issue 7, 1999, Pages 129-133

The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces

Author keywords

Complex hyperbolic structure; Cubic surface; Developing map; Moduli space; Schwarzian derivative; Uniformizing differential equation; Weyl group

Indexed keywords


EID: 22844455284     PISSN: 03862194     EISSN: None     Source Type: Journal    
DOI: 10.3792/pjaa.75.129     Document Type: Article
Times cited : (5)

References (8)
  • 1
    • 0031637912 scopus 로고    scopus 로고
    • A complex hyperbolic structure for moduli of cubic surfaces
    • D. Allcock, J. Carlson, and D. Toledo: A complex hyperbolic structure for moduli of cubic surfaces. C. R. Acad. Sci., 326, 49-54 (1998).
    • (1998) C. R. Acad. Sci. , vol.326 , pp. 49-54
    • Allcock, D.1    Carlson, J.2    Toledo, D.3
  • 3
    • 0001854043 scopus 로고
    • Cross ratio variety as a moduli space of cubic surfaces
    • I. Naruki: Cross ratio variety as a moduli space of cubic surfaces. Proc. London Math. Soc., 45, 1-30 (1982).
    • (1982) Proc. London Math. Soc. , vol.45 , pp. 1-30
    • Naruki, I.1
  • 4
    • 0001762279 scopus 로고
    • Linear differential equations in two variables of rank 4, I, II
    • T. Sasaki and M. Yoshida: Linear differential equations in two variables of rank 4, I, II. Math. Ann., 282, 69-93; 95-111 (1988).
    • (1988) Math. Ann. , vol.282 , pp. 69-93
    • Sasaki, T.1    Yoshida, M.2
  • 5
    • 85010121722 scopus 로고    scopus 로고
    • 6)-orbits of the configurations space of 6 lines on the real projective space
    • 6)-orbits of the configurations space of 6 lines on the real projective space. Kyushu J. Math., 51, 1-58 (1997).
    • (1997) Kyushu J. Math. , vol.51 , pp. 1-58
    • Sekiguchi, J.1    Yoshida, M.2
  • 6
    • 0007340695 scopus 로고    scopus 로고
    • The real loci of the configuration space of six points on the projective line and a Picard modular 3-fold
    • M. Yoshida: The real loci of the configuration space of six points on the projective line and a Picard modular 3-fold. Kumamoto J. Math., 11, 43-67 (1998).
    • (1998) Kumamoto J. Math. , vol.11 , pp. 43-67
    • Yoshida, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.