메뉴 건너뛰기




Volumn 129, Issue 6, 1999, Pages 1157-1169

Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 22844454435     PISSN: 03082105     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0308210500019326     Document Type: Article
Times cited : (15)

References (14)
  • 1
    • 0000267645 scopus 로고
    • Asymptotics for minimizers of a Ginzburg-Landau functional
    • F. Bethuel, H. Brezis and F. Hélein. Asymptotics for minimizers of a Ginzburg-Landau functional. Calculus Variations PDE 1 (1993), 123-148.
    • (1993) Calculus Variations PDE , vol.1 , pp. 123-148
    • Bethuel, F.1    Brezis, H.2    Hélein, F.3
  • 5
    • 1542499721 scopus 로고    scopus 로고
    • Remarks on non minimizing solutions of a Ginzburg-Landau type equation
    • M. Comte and P. Mironescu. Remarks on non minimizing solutions of a Ginzburg-Landau type equation. Asymptotic Analysis 13 (1996), 199-215.
    • (1996) Asymptotic Analysis , vol.13 , pp. 199-215
    • Comte, M.1    Mironescu, P.2
  • 6
    • 0000396649 scopus 로고
    • Spiral waves for λ-ω systems
    • J. M. Greenberg. Spiral waves for λ-ω systems. SIAM J. Appl Math. 39 (1980), 301-309.
    • (1980) SIAM J. Appl Math. , vol.39 , pp. 301-309
    • Greenberg, J.M.1
  • 7
    • 0001645343 scopus 로고
    • Spiral waves in reaction diffusion equations
    • P. Hagan. Spiral waves in reaction diffusion equations. SIAM J. Appl. Math 42 (1982), 762-786.
    • (1982) SIAM J. Appl. Math , vol.42 , pp. 762-786
    • Hagan, P.1
  • 10
    • 0001240515 scopus 로고    scopus 로고
    • Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont symétrie radiale
    • P. Mironescu. Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont symétrie radiale. C. R. Acad. Sci. Paris 323 (1996), 593-598.
    • (1996) C. R. Acad. Sci. Paris , vol.323 , pp. 593-598
    • Mironescu, P.1
  • 11
    • 0142167216 scopus 로고    scopus 로고
    • Explicit bounds for solutions to a Ginzburg-Landau type equation
    • P. Mironescu. Explicit bounds for solutions to a Ginzburg-Landau type equation. Rev. Roumaine Math. Pures Appl. 1 (1996), 263-271.
    • (1996) Rev. Roumaine Math. Pures Appl. , vol.1 , pp. 263-271
    • Mironescu, P.1
  • 13
    • 0002089669 scopus 로고
    • ∞ approximation for minimizers of the Ginzburg-Landau functional
    • ∞ approximation for minimizers of the Ginzburg-Landau functional. C. R. Acad. Sci. Paris 321 (1995), 705-710.
    • (1995) C. R. Acad. Sci. Paris , vol.321 , pp. 705-710
    • Shafrir, I.1
  • 14
    • 0009379513 scopus 로고    scopus 로고
    • Uniqueness of solutions of Ginzburg-Landau problem
    • D. Ye and F. Zhou. Uniqueness of solutions of Ginzburg-Landau problem. Nonlinear Analysis Theory Methods Applic. 26 (1996), 603-613.
    • (1996) Nonlinear Analysis Theory Methods Applic. , vol.26 , pp. 603-613
    • Ye, D.1    Zhou, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.