-
1
-
-
33646970033
-
On the structure of the PI-envelope of a finite-dimensional Lie algebra
-
[Ba 85]
-
[Ba 85] Yu. A. Bahturin, On the structure of the PI-envelope of a finite-dimensional Lie algebra, Soviet Math. (Iz. VUZ) 29 (1985) no. 11, 83-87.
-
(1985)
Soviet Math. (Iz. VUZ)
, Issue.11
, pp. 83-87
-
-
Bahturin, Y.A.1
-
2
-
-
0003233468
-
Infinite Dimensional Lie Superalgebras
-
[BMPZ ] Walter de Gruyter, Berlin, MR 94b:17001
-
[BMPZ ] Yu. A. Bahturin, A. Mikhalev, V. Petrogradskii, M. Zaicev, Infinite Dimensional Lie Superalgebras, Expos. Math, vol 7, Walter de Gruyter, Berlin, 1992. MR 94b:17001
-
(1992)
Expos. Math
, vol.7
-
-
Bahturin, Y.A.1
Mikhalev, A.2
Petrogradskii, V.3
Zaicev, M.4
-
3
-
-
0001456434
-
Actions of commutative Hopf algebras
-
[BeC] MR 87e:16052
-
[BeC] J. Bergen and M. Cohen, Actions of commutative Hopf algebras, Bull. LMS 18 (1986), 159-164. MR 87e:16052
-
(1986)
Bull. LMS
, vol.18
, pp. 159-164
-
-
Bergen, J.1
Cohen, M.2
-
4
-
-
27544483877
-
On the homomorphic image of a special Lie algebra
-
[Bi]
-
[Bi] Yuly Billig, On the homomorphic image of a special Lie algebra, Mat. Sc 136 (178)(1988), 320-323;
-
(1988)
Mat. Sc
, vol.136
, Issue.178
, pp. 320-323
-
-
Billig, Y.1
-
5
-
-
33646966906
-
-
English transi, 89k:17015
-
English transi, in Math. USSR Sb. 64 (1989) MR 89k:17015
-
(1989)
Math. USSR Sb.
, vol.64
-
-
-
6
-
-
84968476481
-
Induced and produced representations of Lie algebras
-
[Bl] MR 46i:7338a
-
[Bl] R. J. Blattner, Induced and produced representations of Lie algebras, Transactions AMS 144 (1969), 457-474. MR 46i:7338a
-
(1969)
Transactions AMS
, vol.144
, pp. 457-474
-
-
Blattner, R.J.1
-
7
-
-
0003011712
-
Identities of graded Lie algebras
-
[BZ] CMP 98:15
-
[BZ] Y. Bahturin, M.Zaicev, Identities of graded Lie algebras, J. Algebra 205 (1998), 1-12. CMP 98:15
-
(1998)
J. Algebra
, vol.205
, pp. 1-12
-
-
Bahturin, Y.1
Zaicev, M.2
-
8
-
-
84967708625
-
Group-graded rings, smash products, and group actions
-
[CM] MR 851:16002
-
[CM] M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. AMS 282 (1984), 237-258. MR 851:16002
-
(1984)
Trans. AMS
, vol.282
, pp. 237-258
-
-
Cohen, M.1
Montgomery, S.2
-
9
-
-
0000092220
-
Group graded rings
-
[CR] MR85b:16002
-
[CR] M. Cohen and L. Rowen, Group graded rings, Comm. Algebra 11 (1983), 1253 -1270. MR85b:16002
-
(1983)
Comm. Algebra
, vol.11
, pp. 1253-1270
-
-
Cohen, M.1
Rowen, L.2
-
10
-
-
0000781762
-
Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple
-
[Du] MR 55:3013
-
[Du] M. Duflo, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple, Ann. Math. 105 (1977), 107-120. MR 55:3013
-
(1977)
Ann. Math.
, vol.105
, pp. 107-120
-
-
Duflo, M.1
-
11
-
-
84968490695
-
Semisimple representations and affine rings
-
[Fa] MR 88h:16027
-
[Fa] D. Farkas, Semisimple representations and affine rings, Proc. AMS 101 (1987), 237-238. MR 88h:16027
-
(1987)
Proc. AMS
, vol.101
, pp. 237-238
-
-
Farkas, D.1
-
12
-
-
49449126179
-
Lie superalgebras
-
[Kac]
-
[Kac] V. Kac, Lie superalgebras, Advances in Math. 26 (1977), 8-96. MR 58:5803
-
(1977)
Advances in Math.
, vol.26
, pp. 8-96
-
-
Kac, V.1
-
13
-
-
0031572140
-
Constructing simple Lie superalgebras from associative graded algebras
-
[Mo] CMP 98:01
-
[Mo] S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra 195 (1997), 558 - 579. CMP 98:01
-
(1997)
J. Algebra
, vol.195
, pp. 558-579
-
-
Montgomery, S.1
-
15
-
-
36749119887
-
Generalized Lie algebras
-
[S79a] MR 80f:17007
-
[S79a] M. Scheunert, Generalized Lie algebras, J. Math Physics 20 (1979), 712-720. MR 80f:17007
-
(1979)
J. Math Physics
, vol.20
, pp. 712-720
-
-
Scheunert, M.1
-
16
-
-
0002780902
-
The Theory of Lie Superalgebras
-
[S79b] Springer-Verlag, Berlin, MR 801:17005
-
[S79b] M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Math., vol. 716, Springer-Verlag, Berlin, 1979. MR 801:17005
-
(1979)
Lecture Notes in Math.
, vol.716
-
-
Scheunert, M.1
|