메뉴 건너뛰기




Volumn 115, Issue 2, 2005, Pages 209-232

Optical soliton bullets in (2+1)D nonlinear bragg resonant periodic geometries

Author keywords

[No Author keywords available]

Indexed keywords

DEFECTS; ENERGY TRANSFER; HAMILTONIANS; ITERATIVE METHODS; NONLINEAR EQUATIONS; NONLINEAR OPTICS;

EID: 22544487243     PISSN: 00222526     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1467-9590.2005.00326.x     Document Type: Article
Times cited : (21)

References (21)
  • 3
    • 85153245785 scopus 로고    scopus 로고
    • Stopping and bending light in 2D photonic structures
    • (F. K. Abdullaev and V. V. Konotop Eds.), Kluwer, Dordrecht
    • A. B. ACEVES and T. DOHNAL, Stopping and bending light in 2D photonic structures, in Nonlinear Waves: Classical and Quantum Effects, (F. K. Abdullaev and V. V. Konotop Eds.), pp. 293-302, Kluwer, Dordrecht, 2004.
    • (2004) Nonlinear Waves: Classical and Quantum Effects , pp. 293-302
    • Aceves, A.B.1    Dohnal, T.2
  • 5
    • 0006488203 scopus 로고    scopus 로고
    • Nonlinear pulse propagation in Bragg gratings
    • B. J. EGGLETON, C. M. DE STERKE, and R. E. SLUSHER, Nonlinear pulse propagation in Bragg gratings, JOSA B 14:2980-2993 (1997).
    • (1997) JOSA B , vol.14 , pp. 2980-2993
    • Eggleton, B.J.1    De Sterke, C.M.2    Slusher, R.E.3
  • 6
    • 0002330060 scopus 로고    scopus 로고
    • Nonlinear switching in a 20-cm-long fiber Bragg grating
    • N. G. R. BRODERICK, D. J. RICHARDSON, and M. IBSEN, Nonlinear switching in a 20-cm-long fiber Bragg grating, Opt. Lett. 25:536-538 (2000).
    • (2000) Opt. Lett. , vol.25 , pp. 536-538
    • Broderick, N.G.R.1    Richardson, D.J.2    Ibsen, M.3
  • 9
    • 23544453565 scopus 로고
    • Gap solitons and the nonlinear optical response of superlattices
    • W. CHEN and D. L. MILLS, Gap solitons and the nonlinear optical response of superlattices, Phys. Rev. Lett. 58:160-163 (1987).
    • (1987) Phys. Rev. Lett. , vol.58 , pp. 160-163
    • Chen, W.1    Mills, D.L.2
  • 10
    • 0002873156 scopus 로고
    • Self induced transparency solitons in nonlinear refractive media
    • A. B. ACEVES and S. WABNITZ, Self induced transparency solitons in nonlinear refractive media, Phys. Lett. A 141:37-42 (1989).
    • (1989) Phys. Lett. A , vol.141 , pp. 37-42
    • Aceves, A.B.1    Wabnitz, S.2
  • 11
    • 10344226875 scopus 로고
    • Slow Bragg solitons in nonlinear periodic structures
    • D. N. CHRISTODOULIDES and R. I. JOSEPH, Slow Bragg solitons in nonlinear periodic structures, Phys. Rev. Lett. 62:1746-1749 (1989).
    • (1989) Phys. Rev. Lett. , vol.62 , pp. 1746-1749
    • Christodoulides, D.N.1    Joseph, R.I.2
  • 12
    • 0032490495 scopus 로고    scopus 로고
    • Stability, multistability, and wobbling of optical gap solitons
    • A. DE ROSSI, C. CONTI, and S. TRILLO, Stability, multistability, and wobbling of optical gap solitons, Phys. Rev. Lett. 81:85-88 (1998).
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 85-88
    • De Rossi, A.1    Conti, C.2    Trillo, S.3
  • 14
    • 21844500101 scopus 로고
    • Two-dimensional gap solitons in a nonlinear periodic slab waveguide
    • A. B. ACEVES, B. CONSTANTINI, and C. DE ANGELIS, Two-dimensional gap solitons in a nonlinear periodic slab waveguide, JOSA B 12:1475-1479 (1995).
    • (1995) JOSA B , vol.12 , pp. 1475-1479
    • Aceves, A.B.1    Constantini, B.2    De Angelis, C.3
  • 15
    • 33646983153 scopus 로고    scopus 로고
    • Optical solitary was in two and three dimensional photonic bandgap structures
    • N. AKÖZBEK and S. JOHN, Optical solitary was in two and three dimensional photonic bandgap structures, Phys. Rev. E 57:2287-2319 (1998).
    • (1998) Phys. Rev. E , vol.57 , pp. 2287-2319
    • Aközbek, N.1    John, S.2
  • 16
    • 1042277258 scopus 로고    scopus 로고
    • Gap-soliton bullets in waveguide gratings
    • A. B. ACEVES, G. FIBICH, and B. ILAN, Gap-soliton bullets in waveguide gratings, Phys. D 189:277-286 (2004).
    • (2004) Phys. D , vol.189 , pp. 277-286
    • Aceves, A.B.1    Fibich, G.2    Ilan, B.3
  • 17
    • 0008453221 scopus 로고
    • Stability properties of solutions to nonlinear models possessing a sign - Undefined metric
    • I. V. BARASHENKOV, Stability properties of solutions to nonlinear models possessing a sign - undefined metric, Acta Phys. Austriaca 55:155-165 (1983).
    • (1983) Acta Phys. Austriaca , vol.55 , pp. 155-165
    • Barashenkov, I.V.1
  • 21
    • 18944400354 scopus 로고    scopus 로고
    • A new construction of perfectly matched layers for hyperbolic systems with applications to the linearized Euler equations
    • G. Cohen, E. Heikkola, P. Joly, and P. Neittaanmäki, Eds., Springer-Verlag, Berlin
    • T. HAGSTROM, A new construction of perfectly matched layers for hyperbolic systems with applications to the linearized Euler equations, in Mathematical and Numerical Aspects of Wave Propagation Phenomena, G. Cohen, E. Heikkola, P. Joly, and P. Neittaanmäki, Eds., pp. 125-129, Springer-Verlag, Berlin, 2003.
    • (2003) Mathematical and Numerical Aspects of Wave Propagation Phenomena , pp. 125-129
    • Hagstrom, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.