-
1
-
-
3042805560
-
Quantum geometry and gravity: Recent advances
-
(Durban) (World Scientific, New York)
-
Ashtekar, A., " Quantum geometry and gravity: Recent advances, " General Relativity and Gravitation (Durban, 2001) (World Scientific, New York, 2002), pp. 28-53.
-
(2001)
General Relativity and Gravitation
, pp. 28-53
-
-
Ashtekar, A.1
-
2
-
-
0039192960
-
Finite two-dimensional oscillator. I. The Cartesian model
-
Atakishiyev, N. M., Pogosyan, G. S., Vicent, L. E., and Bernardo Wolf, K., " Finite two-dimensional oscillator. I. The Cartesian model, " J. Phys. A 34, 9381-9398 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 9381-9398
-
-
Atakishiyev, N.M.1
Pogosyan, G.S.2
Vicent, L.E.3
Bernardo Wolf, K.4
-
3
-
-
0039303677
-
Finite two-dimensional oscillator. II. The radial model
-
Atakishiyev, N. M., Pogosyan, G. S., Vicent, L. E., and Bernardo Wolf, K., " Finite two-dimensional oscillator. II. The radial model, " J. Phys. A 34, 9399-9415 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 9399-9415
-
-
Atakishiyev, N.M.1
Pogosyan, G.S.2
Vicent, L.E.3
Bernardo Wolf, K.4
-
4
-
-
34249922650
-
Difference analogs of the harmonic oscillator
-
Atakishiyev, N. M., and Suslov, S. K., " Difference analogs of the harmonic oscillator, " Theor. Math. Phys. 85, 1055-1062 (1991).
-
(1991)
Theor. Math. Phys.
, vol.85
, pp. 1055-1062
-
-
Atakishiyev, N.M.1
Suslov, S.K.2
-
5
-
-
0024983642
-
Simplifying the form of Lie groups admitted by a given differential equation
-
Bluman, G., " Simplifying the form of Lie groups admitted by a given differential equation, " J. Math. Anal. Appl. 145, 52-62 (1990).
-
(1990)
J. Math. Anal. Appl.
, vol.145
, pp. 52-62
-
-
Bluman, G.1
-
6
-
-
17544403102
-
Absence of a singularity in loop quantum cosmology
-
Bojowald, M., " Absence of a singularity in loop quantum cosmology, " Phys. Rev. Lett. 86, 5227-5230 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5227-5230
-
-
Bojowald, M.1
-
7
-
-
0346040330
-
Consistency conditions for fundamentally discrete theories
-
Bojowald, M., " Consistency conditions for fundamentally discrete theories, " Class. Quantum Grav. 21, 121-144 (2004).
-
(2004)
Class. Quantum Grav.
, vol.21
, pp. 121-144
-
-
Bojowald, M.1
-
8
-
-
0000596443
-
All solutions of standard symmetric linear partial differential equations have classical Lie symmetry
-
Broadbridge, P., and Arrigo, D. J., " All solutions of standard symmetric linear partial differential equations have classical Lie symmetry, " J. Math. Anal. Appl. 234, 109-122 (1999).
-
(1999)
J. Math. Anal. Appl.
, vol.234
, pp. 109-122
-
-
Broadbridge, P.1
Arrigo, D.J.2
-
9
-
-
22544457316
-
Umbral calculus
-
Di Bucchianico, A., and Loeb, D., " Umbral calculus, " Electron. J. Comb. DS3 (2000), 34 pages, http://www.combinatorics.org
-
(2000)
Electron. J. Comb.
, vol.3
-
-
Bucchianico, D.1
-
10
-
-
0035824414
-
Canonical commutation relation preserving maps
-
Chryssomalakos, C., and Turbiner, A., " Canonical commutation relation preserving maps, " J. Phys. A 34, 10475-10485 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 10475-10485
-
-
Chryssomalakos, C.1
Turbiner, A.2
-
11
-
-
0030487168
-
Umbral calculus, discretization and quantum mechanics on a lattice
-
Dimakis, A., Müller-Hoissen, F., and Striker, T., " Umbral calculus, discretization and quantum mechanics on a lattice, " J. Phys. A 29, 6861-6876 (1996).
-
(1996)
J. Phys. A
, vol.29
, pp. 6861-6876
-
-
Dimakis, A.1
Müller-Hoissen, F.2
Striker, T.3
-
12
-
-
0001158863
-
Transformation groups in a space of difference variables
-
Dorodnitsyn, V. A., " Transformation groups in a space of difference variables, " J. Sov. Math. 55, 1490-1517 (1991).
-
(1991)
J. Sov. Math.
, vol.55
, pp. 1490-1517
-
-
Dorodnitsyn, V.A.1
-
14
-
-
0034342220
-
Lie group classification of second order difference equations
-
Dorodnitsyn, V. A., Kozlov, R., and Winternitz, P., " Lie group classification of second order difference equations, " J. Math. Phys. 41, 480-504 (2000).
-
(2000)
J. Math. Phys.
, vol.41
, pp. 480-504
-
-
Dorodnitsyn, V.A.1
Kozlov, R.2
Winternitz, P.3
-
15
-
-
0346040227
-
Continuous symmetries of Lagrangians and exact solutions of discrete equations
-
Dorodnitsyn, V. A., Kozlov, R., and Winternitz, P., " Continuous symmetries of Lagrangians and exact solutions of discrete equations, " J. Math. Phys. 45, 336-359 (2004).
-
(2004)
J. Math. Phys.
, vol.45
, pp. 336-359
-
-
Dorodnitsyn, V.A.1
Kozlov, R.2
Winternitz, P.3
-
17
-
-
0001278061
-
Symmetries of the heat equation on the lattice
-
Floreanini, R., Negro, J., Nieto, L. M., and Vinet, L., " Symmetries of the heat equation on the lattice, " Lett. Math. Phys. 36, 351-355 (1996).
-
(1996)
Lett. Math. Phys.
, vol.36
, pp. 351-355
-
-
Floreanini, R.1
Negro, J.2
Nieto, L.M.3
Vinet, L.4
-
18
-
-
21844515167
-
Lie symmetries of finite-difference equations
-
Floreanini, R., and Vinet, L., " Lie symmetries of finite-difference equations, " J. Math. Phys. 36, 7024-7042 (1995).
-
(1995)
J. Math. Phys.
, vol.36
, pp. 7024-7042
-
-
Floreanini, R.1
Vinet, L.2
-
19
-
-
50549193436
-
On higher order symmetries in quantum mechanics
-
Friš, I., Mandrosov, V., Uhliř, M., Smorodinsky, J., and Winternitz, P., " On higher order symmetries in quantum mechanics, " Phys. Lett. 16, 354-356 (1965).
-
(1965)
Phys. Lett.
, vol.16
, pp. 354-356
-
-
Friš, I.1
Mandrosov, V.2
Uhliř, M.3
Smorodinsky, J.4
Winternitz, P.5
-
21
-
-
24544461644
-
Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators
-
Gonzalez-Lopez, A., Kamran, N., and Olver, P. J., " Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators, " Commun. Math. Phys. 153, 117-146 (1993).
-
(1993)
Commun. Math. Phys.
, vol.153
, pp. 117-146
-
-
Gonzalez-Lopez, A.1
Kamran, N.2
Olver, P.J.3
-
22
-
-
0347802106
-
On pairs of difference operators satisfying [D, X]=Id
-
Gorskii, A. Z., and Szmigielski, J., " On pairs of difference operators satisfying [D, X]=Id, " J. Math. Phys. 39, 568-585 (1998).
-
(1998)
J. Math. Phys.
, vol.39
, pp. 568-585
-
-
Gorskii, A.Z.1
Szmigielski, J.2
-
23
-
-
0036925418
-
Superintegrability with third order integrals in quantum and classical mechanics
-
Gravel, S., and Winternitz, P., " Superintegrability with third order integrals in quantum and classical mechanics, " J. Math. Phys. 43, 5902-5912 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 5902-5912
-
-
Gravel, S.1
Winternitz, P.2
-
24
-
-
0034697928
-
Lie algebra contractions and symmetries of the Toda hierarchy
-
Hernandez Heredero, R., Levi, D., Rodriguez, M. A., and Winternitz, P., " Lie algebra contractions and symmetries of the Toda hierarchy, " J. Phys. A 33, 5025-5040 (2000).
-
(2000)
J. Phys. A
, vol.33
, pp. 5025-5040
-
-
Heredero, H.1
-
25
-
-
0040843315
-
Symmetries of the discrete Burgers equation
-
Hernandez Heredero, R., Levi, D., and Winternitz, P., " Symmetries of the discrete Burgers equation, " J. Phys. A 32, 2685-2695 (1999).
-
(1999)
J. Phys. A
, vol.32
, pp. 2685-2695
-
-
Heredero, H.1
-
26
-
-
0001537437
-
Coupling-constant metamorphosis and duality between integrable Hamiltonian systems
-
Hietarinta, J., Grammaticos, B., Dorizzi, B., and Ramani, A., " Coupling-constant metamorphosis and duality between integrable Hamiltonian systems, " Phys. Rev. Lett. 53, 1707-1710 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 1707-1710
-
-
Hietarinta, J.1
Grammaticos, B.2
Dorizzi, B.3
Ramani, A.4
-
30
-
-
0036630049
-
Complete sets of invariants for dynamical systems that admit a separation of variables
-
Kalnins, E. G., Kress, J. M., Miller, Jr., W., and Pogosyan, G. S., " Complete sets of invariants for dynamical systems that admit a separation of variables, " J. Math. Phys. 43, 3592-3609 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 3592-3609
-
-
Kalnins, E.G.1
Kress, J.M.2
Miller Jr., W.3
Pogosyan, G.S.4
-
32
-
-
0035896477
-
Discrete derivatives and symmetries of difference equations
-
Levi, D., Negro, J., and del Olmo, M. A., " Discrete derivatives and symmetries of difference equations, " J. Phys. A 34, 2023-2030 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 2023-2030
-
-
Levi, D.1
Negro, J.2
Del Olmo, M.A.3
-
33
-
-
0035610360
-
Lie symmetries of difference equations
-
Levi, D., Negro, J., and del Olmo, M. A., " Lie symmetries of difference equations, " Czech. J. Phys. 51, 341-348 (2001).
-
(2001)
Czech. J. Phys.
, vol.51
, pp. 341-348
-
-
Levi, D.1
Negro, J.2
Del Olmo, M.A.3
-
34
-
-
1642603376
-
Discrete q-derivatives and symmetries of q-difference equations
-
Levi, D., Negro, J., and del Olmo, M. A., " Discrete q-derivatives and symmetries of q-difference equations, " J. Phys. A 37, 3459-3473 (2004).
-
(2004)
J. Phys. A
, vol.37
, pp. 3459-3473
-
-
Levi, D.1
Negro, J.2
Del Olmo, M.A.3
-
35
-
-
33646665018
-
Lorentz and Galilei invariance on lattices
-
Levi, D., Tempesta, P., and Winternitz, P., " Lorentz and Galilei invariance on lattices, " Phys. Rev. D 69, 105011 (2004).
-
(2004)
Phys. Rev. D
, vol.69
, pp. 105011
-
-
Levi, D.1
Tempesta, P.2
Winternitz, P.3
-
36
-
-
0034364789
-
Lie point symmetries of difference equations and lattices
-
Levi, D., Tremblay, S., and Winternitz, P., " Lie point symmetries of difference equations and lattices, " J. Phys. A 33, 8507-8523 (2000).
-
(2000)
J. Phys. A
, vol.33
, pp. 8507-8523
-
-
Levi, D.1
Tremblay, S.2
Winternitz, P.3
-
37
-
-
0035834607
-
Lie symmetries of multidimensional difference equations
-
Levi, D., Tremblay, S., and Winternitz, P., " Lie symmetries of multidimensional difference equations, " J. Phys. A 34, 9507-9524 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 9507-9524
-
-
Levi, D.1
Tremblay, S.2
Winternitz, P.3
-
38
-
-
0040944374
-
Lie group formalism for difference equations
-
Levi, D., Vinet, L., and Winternitz, P., " Lie group formalism for difference equations, " J. Appl. Phys. 30, 633-649 (1997).
-
(1997)
J. Appl. Phys.
, vol.30
, pp. 633-649
-
-
Levi, D.1
Vinet, L.2
Winternitz, P.3
-
39
-
-
0000284251
-
Continuous symmetries of discrete equations
-
Levi, D., and Winternitz, P., " Continuous symmetries of discrete equations, " Phys. Lett. A 152, 335-338 (1991).
-
(1991)
Phys. Lett. A
, vol.152
, pp. 335-338
-
-
Levi, D.1
Winternitz, P.2
-
40
-
-
0037040846
-
Lie point symmetries and commuting flows for equations on lattices
-
Levi, D., and Winternitz, P., " Lie point symmetries and commuting flows for equations on lattices, " J. Phys. A 35, 2249-2262 (2002).
-
(2002)
J. Phys. A
, vol.35
, pp. 2249-2262
-
-
Levi, D.1
Winternitz, P.2
-
41
-
-
0001156359
-
Canonical structure and symmetries for discrete systems
-
Maeda, S., " Canonical structure and symmetries for discrete systems, " Math. Japonica 25, 405-420 (1980).
-
(1980)
Math. Japonica
, vol.25
, pp. 405-420
-
-
Maeda, S.1
-
42
-
-
0025494888
-
Symmetry Lie algebra of n-th order ordinary differential equations
-
Mahomed, F. M., and Leach, P. G. L., " Symmetry Lie algebra of n-th order ordinary differential equations, " J. Math. Anal. Appl. 151, 80-107 (1990).
-
(1990)
J. Math. Anal. Appl.
, vol.151
, pp. 80-107
-
-
Mahomed, F.M.1
Leach, P.G.L.2
-
43
-
-
51249188097
-
A systematic search for nonrelativistic systems with dynamical symmetries
-
Makarov, A. A., Smorodinsky, J., Valiev, Kh., and Winternitz, P., " A systematic search for nonrelativistic systems with dynamical symmetries, " Nuovo Cimento A 52, 1061-1084 (1967).
-
(1967)
Nuovo Cimento A
, vol.52
, pp. 1061-1084
-
-
Makarov, A.A.1
Smorodinsky, J.2
Valiev, Kh.3
Winternitz, P.4
-
44
-
-
0007392201
-
Symmetries of the wave equation in a uniform lattice
-
Negro, J., and Nieto, L. M., " Symmetries of the wave equation in a uniform lattice, " J. Phys. A 29, 1107-1114 (1996).
-
(1996)
J. Phys. A
, vol.29
, pp. 1107-1114
-
-
Negro, J.1
Nieto, L.M.2
-
45
-
-
0001586451
-
The maximal kinematical invariance group of the Schrödinger equation
-
Niederer, U., " The maximal kinematical invariance group of the Schrödinger equation, " Helv. Phys. Acta 45, 802-810 (1973).
-
(1973)
Helv. Phys. Acta
, vol.45
, pp. 802-810
-
-
Niederer, U.1
-
46
-
-
0003674259
-
-
Springer-Verlag, Berlin
-
Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B., Classical Orthogonal Polynomials of a Discrete Variable (Springer-Verlag, Berlin, 1991).
-
(1991)
Classical Orthogonal Polynomials of A Discrete Variable
-
-
Nikiforov, A.F.1
Suslov, S.K.2
Uvarov, V.B.3
-
48
-
-
0038448280
-
Superintegrable n=2 systems, quadratic constants of motion and the potentials of Drach
-
Rañada, M. F., " Superintegrable n=2 systems, quadratic constants of motion and the potentials of Drach, " J. Math. Phys. 38, 4165-4178 (1997).
-
(1997)
J. Math. Phys.
, vol.38
, pp. 4165-4178
-
-
Rañada, M.F.1
-
49
-
-
36449008569
-
Evolution equations invariant under two-dimensional space-time Schrödinger group
-
Rideau, G., and Winternitz, P., " Evolution equations invariant under two-dimensional space-time Schrödinger group, " J. Math. Phys. 34, 558-570 (1993).
-
(1993)
J. Math. Phys.
, vol.34
, pp. 558-570
-
-
Rideau, G.1
Winternitz, P.2
-
51
-
-
0035981863
-
Quantum superintegrability and exact solvability in n dimensions
-
Rodriguez, M. A., and Winternitz, P., " Quantum superintegrability and exact solvability in n dimensions, " J. Math. Phys. 43, 1309-1322 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 1309-1322
-
-
Rodriguez, M.A.1
Winternitz, P.2
-
53
-
-
0002300455
-
The umbral calculus
-
Roman, S., and Rota, G. C., " The umbral calculus, " Adv. Math. 27, 95-188 (1978).
-
(1978)
Adv. Math.
, vol.27
, pp. 95-188
-
-
Roman, S.1
Rota, G.C.2
-
55
-
-
49549163193
-
On the foundations of combinatorial theory VII. Finite operator calculus
-
Rota, G. C., Kahaner, D., and Olyzko, A., " On the foundations of combinatorial theory VII. Finite operator calculus, " J. Math. Anal. Appl. 42, 684-760 (1973).
-
(1973)
J. Math. Anal. Appl.
, vol.42
, pp. 684-760
-
-
Rota, G.C.1
Kahaner, D.2
Olyzko, A.3
-
56
-
-
0035529641
-
Superintegrable systems in quantum mechanics and classical Lie theory
-
Sheftel, M. B., Tempesta, P., and Winternitz, P., " Superintegrable systems in quantum mechanics and classical Lie theory, " J. Math. Phys. 42, 659-673 (2001).
-
(2001)
J. Math. Phys.
, vol.42
, pp. 659-673
-
-
Sheftel, M.B.1
Tempesta, P.2
Winternitz, P.3
-
57
-
-
0001435652
-
Lie algebraic discretization of differential equations
-
Smirnov, Y., and Turbiner, A., " Lie algebraic discretization of differential equations, " Mod. Phys. Lett. A 10, 1795-1802 (1995).
-
(1995)
Mod. Phys. Lett. A
, vol.10
, pp. 1795-1802
-
-
Smirnov, Y.1
Turbiner, A.2
-
58
-
-
0035537169
-
Exact solvability of superintegrable systems
-
Tempesta, P., Turbiner, A., and Winternitz, P., " Exact solvability of superintegrable systems, " J. Math. Phys. 42, 4248-4257 (2001).
-
(2001)
J. Math. Phys.
, vol.42
, pp. 4248-4257
-
-
Tempesta, P.1
Turbiner, A.2
Winternitz, P.3
-
60
-
-
21144480036
-
On polynomial solutions of differential equations
-
Turbiner, A., " On polynomial solutions of differential equations, " J. Math. Phys. 33, 3989-3993 (1992).
-
(1992)
J. Math. Phys.
, vol.33
, pp. 3989-3993
-
-
Turbiner, A.1
-
61
-
-
0001218719
-
Quasi-exactly-solvable differential equations
-
edited by, N. Ibragimov, (CRC, Boca Raton, FL)
-
Turbiner, A., " Quasi-exactly-solvable differential equations, " in CRC Handbook of Lie Group Analysis of Differential Equations, edited by, N. Ibragimov, (CRC, Boca Raton, FL, 1994), Vol. 3.
-
(1994)
CRC Handbook of Lie Group Analysis of Differential Equations
, vol.3
-
-
Turbiner, A.1
-
62
-
-
22544462349
-
Different faces of the harmonic oscillator
-
edited by, D. Levi, and, O. Ragnisco, (AMS/CRM, Providence)
-
Turbiner, A., " Different faces of the harmonic oscillator, " in Symmetries and Integrability of Difference Equations, edited by, D. Levi, and, O. Ragnisco, (AMS/CRM, Providence, 2000).
-
(2000)
Symmetries and Integrability of Difference Equations
-
-
Turbiner, A.1
-
63
-
-
0035836979
-
Canonical discretization. I. Discrete faces of (an)harmonic oscillator
-
Turbiner, A., " Canonical discretization. I. Discrete faces of (an)harmonic oscillator, " Int. J. Mod. Phys. A 16, 1579-1603 (2001).
-
(2001)
Int. J. Mod. Phys. A
, vol.16
, pp. 1579-1603
-
-
Turbiner, A.1
-
64
-
-
0000571271
-
Symmetry groups in classical and quantum mechanics
-
Winternitz, P., Smorodinsky, J., Uhliř, M., and Friš, I., " Symmetry groups in classical and quantum mechanics, " Yad. Fiz. 4, 625-635 (1966)
-
(1966)
Yad. Fiz.
, vol.4
, pp. 625-635
-
-
Winternitz, P.1
Smorodinsky, J.2
Uhliř, M.3
Friš, I.4
-
65
-
-
0001312314
-
-
[Sov. J. Nucl. Phys. 4, 444-450 (1967)].
-
(1967)
Sov. J. Nucl. Phys.
, vol.4
, pp. 444-450
-
-
|