-
3
-
-
22544468943
-
-
note
-
2, respectively, away from the hyper-surface);
-
-
-
-
8
-
-
22544467100
-
-
gr-qc/0305004
-
N. Deruelle and J. Madore, gr-qc/0305004.
-
-
-
Deruelle, N.1
-
14
-
-
0037030046
-
-
D. Langlois, K. i. Maeda, and D. Wands, Phys. Rev. Lett. 88, 181301 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 181301
-
-
Langlois, D.1
-
15
-
-
22544465101
-
-
gr-qc/0210084
-
V. A. Berezin and A. L. Smirnov, gr-qc/0210084.
-
-
-
Berezin, V.A.1
-
16
-
-
0035884064
-
-
J. E. Kim, B. Kyae, and H. M. Lee, Phys. Rev. D 64, 065011 (2001);
-
(2001)
Phys. Rev. D
, vol.64
, pp. 065011
-
-
Kim, J.E.1
-
20
-
-
0003590414
-
-
North-Holland, New York
-
Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics (North-Holland, New York, 1982).
-
(1982)
Analysis, Manifolds and Physics
-
-
Choquet-Bruhat, Y.1
Dewitt-Morette, C.2
Dillard-Bleick, M.3
-
21
-
-
84968282200
-
-
T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213 (1980).
-
(1980)
Phys. Rep.
, vol.66
, pp. 213
-
-
Eguchi, T.1
-
22
-
-
22544483060
-
-
note
-
If the Lagrangian is taken to be a sum of such terms there are solutions of nonzero torsion. This makes it natural to consider also dimensionally continued Pontryagin densities which contain torsion explicitly; see Ref. 19.
-
-
-
-
24
-
-
22544457313
-
-
note
-
3 is the boundary action of three "intersecting" Chern-Simons theories and as such it is gauge invariant under local Lorentz transformations.
-
-
-
-
25
-
-
0003447907
-
-
edited by, G. 't Hooft, et al., (Plenum, New York)
-
R. Stora, Progress in Gauge Field Theory, edited by, G. 't Hooft, et al., (Plenum, New York, 1984);
-
(1984)
Progress in Gauge Field Theory
-
-
Stora, R.1
-
26
-
-
0003504974
-
-
edited by, B. S. De Witt, and, R. Stora, (Elsevier, Amsterdam)
-
B. Zumino, Relativity, Groups and Topology II, edited by, B. S. De Witt, and, R. Stora, (Elsevier, Amsterdam, 1984);
-
(1984)
Relativity, Groups and Topology II
-
-
Zumino, B.1
-
29
-
-
22544453421
-
-
hep-th/0010020
-
J. Gegenberg and G. Kunstatter, hep-th/0010020.
-
-
-
Gegenberg, J.1
-
30
-
-
22544478929
-
-
note
-
The general gravitation theory we consider is built as a sum of a desired set of dimensionally continued topological densities. The coefficients can be taken to be functions of scalar fields, making the theory dilatonic. The variation with respect to the connection leads to a nonzero torsion in this case. The torsion equation is a constraint on the variation of the scalar fields. Solving it for the connection and substituting in the Lagrangian one obtains explicitly an action for the dilatonic fields.
-
-
-
-
31
-
-
22544454573
-
-
note
-
The equations of motion for ω are satisfied by the zero torsion condition but are not, for n≥1, identical to it. There are potentially solutions of nonvanishing torsion; see Ref. 19.
-
-
-
-
32
-
-
22544449983
-
-
hep-th/0401221
-
H. M. Lee and G. Tasinato, hep-th/0401221.
-
-
-
Lee, H.M.1
-
33
-
-
22544483351
-
-
hep-th/0402204
-
I. Navarro and J. Santiago, hep-th/0402204.
-
-
-
Navarro, I.1
-
34
-
-
22544482444
-
-
gr-qc/0401062
-
E. Gravanis and S. Willison, gr-qc/0401062.
-
-
-
Gravanis, E.1
|