-
1
-
-
0041080553
-
Transience of stochastically perturbed classical Hamiltonian systems and random wave operators
-
CMP 97:09
-
Albeverio, S-, Hubert, A. and Kolokoltsov, V.N. (1997). Transience of stochastically perturbed classical Hamiltonian systems and random wave operators. Stochastics Stochastics Rep. 60. CMP 97:09
-
(1997)
Stochastics Stochastics Rep.
, vol.60
-
-
Albeverio, S.1
Hubert, A.2
Kolokoltsov, V.N.3
-
3
-
-
84968476146
-
The integral of symmetric unimodular function over a symmetric convex set and some probability inequalities
-
Anderson, T.W. (1955). The integral of symmetric unimodular function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6;170-176. MR 16:1005a
-
(1955)
Proc. Amer. Math. Soc.
, vol.6
, pp. 170-176
-
-
Anderson, T.W.1
-
4
-
-
21144470601
-
Some exact equivalents for the Brownian motion in Holder norm
-
MR 94a:60117
-
Baldi, P. and Roynette, B. (1992). Some exact equivalents for the Brownian motion in Holder norm. Probab. Th. Rel. Fields 93 457-484. MR 94a:60117
-
(1992)
Probab. Th. Rel. Fields
, vol.93
, pp. 457-484
-
-
Baldi, P.1
Roynette, B.2
-
6
-
-
84968502795
-
On the maximum partial sums of sequences of independent random variables
-
MR 10:132b
-
Chung, K.L. (1948). On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64 205-233. MR 10:132b
-
(1948)
Trans. Amer. Math. Soc.
, vol.64
, pp. 205-233
-
-
Chung, K.L.1
-
8
-
-
0038094849
-
Fubini's theorem for double Wiener integrals and the variance of the Brownian path
-
MR 92m:60072
-
Donati-Martin, C. and Yor, M. (1991). Fubini's theorem for double Wiener integrals and the variance of the Brownian path. Ann. Inst. H. Poincaré Probab. Statist. 27 181-200. MR 92m:60072
-
(1991)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.27
, pp. 181-200
-
-
Donati-Martin, C.1
Yor, M.2
-
9
-
-
0000312121
-
Sample functions of stochastic processes with stationary, independent increments
-
Dekker, New York. MR 53:4240
-
Fristedt, B.E. (1974). Sample functions of stochastic processes with stationary, independent increments. Adv. Probab. 3 241-396. Dekker, New York. MR 53:4240
-
(1974)
Adv. Probab.
, vol.3
, pp. 241-396
-
-
Fristedt, B.E.1
-
10
-
-
0001782008
-
Probability theory: Its role and its impact
-
MR 27:1972
-
Kac, M. (1962). Probability theory: its role and its impact. SIAM Rev. 4 1-11. MR 27:1972
-
(1962)
SIAM Rev.
, vol.4
, pp. 1-11
-
-
Kac, M.1
-
11
-
-
0011645698
-
Levy-classes and self-normalization
-
paper no.l, MR 97h:60024
-
Khoshnevisan, D. (1996). Levy-classes and self-normalization. Electronic J. Probab. 1, paper no.l, 1-18. MR 97h:60024
-
(1996)
Electronic J. Probab.
, vol.1
, pp. 1-18
-
-
Khoshnevisan, D.1
-
12
-
-
0038433684
-
Calculation of characteristic functions of some functionals of a Wiener process and a Brownian bridge (English translation)
-
MR 88f:60145
-
Klyachko, A.A. and Solodyannikov, Yu.V. (1987). Calculation of characteristic functions of some functionals of a Wiener process and a Brownian bridge (English translation). Th. Probab. Appl. 31 500-504. MR 88f:60145
-
(1987)
Th. Probab. Appl.
, vol.31
, pp. 500-504
-
-
Klyachko, A.A.1
Solodyannikov, Y.V.2
-
13
-
-
0011525850
-
Local variation of diffusion in local time
-
MR 53:1754
-
Knight, F.B. (1973). Local variation of diffusion in local time. Ann. Probab. 1 1026-1034. MR 53:1754
-
(1973)
Ann. Probab.
, vol.1
, pp. 1026-1034
-
-
Knight, F.B.1
-
14
-
-
0031518992
-
A note on the long time asymptotics of the Brownian motion with applications to the theory of quantum measurement
-
CMP 98:04
-
Kolokoltsov, V.N. (1997). A note on the long time asymptotics of the Brownian motion with applications to the theory of quantum measurement. Potential Anal. 7 759-764. CMP 98:04
-
(1997)
Potential Anal.
, vol.7
, pp. 759-764
-
-
Kolokoltsov, V.N.1
-
15
-
-
0000946488
-
Small ball problems for Brownian motion and the Brownian sheet
-
MR 94h:60121
-
Kuelbs, J. and Li, W.V. (1993). Small ball problems for Brownian motion and the Brownian sheet. J. Theoretical Probab. 6 547-577. MR 94h:60121
-
(1993)
J. Theoretical Probab.
, vol.6
, pp. 547-577
-
-
Kuelbs, J.1
Li, W.V.2
-
16
-
-
0001461506
-
Metric entropy and the small ball problem for Gaussian measures
-
MR 94j:60078
-
Kuelbs, J. and Li, W.V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Fund. Anal. 116 133-157. MR 94j:60078
-
(1993)
J. Fund. Anal.
, vol.116
, pp. 133-157
-
-
Kuelbs, J.1
Li, W.V.2
-
17
-
-
0013199932
-
Small ball probabilities for Gaussian processes with stationary increments under Holder norms
-
MR 9Gb:60096
-
Kuelbs, J., Li, W.V. and Shao, Q.-M. (1995). Small ball probabilities for Gaussian processes with stationary increments under Holder norms. J. Theoretical Probab. 8 361-386. MR 9Gb:60096
-
(1995)
J. Theoretical Probab.
, vol.8
, pp. 361-386
-
-
Kuelbs, J.1
Li, W.V.2
Shao, Q.-M.3
-
18
-
-
0001211949
-
Lim inf results for Gaussian samples and Chung's functional LIL
-
MR 96h:60047
-
Kuelbs, J., Li, W.V. and Talagrand, M. (1994). Lim inf results for Gaussian samples and Chung's functional LIL. Ann. Probab. 22 1879-1903. MR 96h:60047
-
(1994)
Ann. Probab.
, vol.22
, pp. 1879-1903
-
-
Kuelbs, J.1
Li, W.V.2
Talagrand, M.3
-
20
-
-
0031101104
-
First exit time from a bounded interval for integrated Brownian motion
-
MR 98a:G0116
-
Lâchai, A. (1997). First exit time from a bounded interval for integrated Brownian motion. C. R. Acad. Sei. Paris. Sér. I Math. 324 559-564. MR 98a:G0116
-
(1997)
C. R. Acad. Sei. Paris. Sér. I Math.
, vol.324
, pp. 559-564
-
-
Lâchai, A.1
-
22
-
-
0001173694
-
Comparison results for the lower tail of Gaussian seminorms
-
MR 93k:60088
-
Li, W.V. (1992). Comparison results for the lower tail of Gaussian seminorms. J. Theoretical Probab. 5 1-31. MR 93k:60088
-
(1992)
J. Theoretical Probab.
, vol.5
, pp. 1-31
-
-
Li, W.V.1
-
24
-
-
0000230359
-
A winding problem for a resonator driven by a white noise
-
MR 27:6312
-
McKean, H.P. (1963). A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 227-235. MR 27:6312
-
(1963)
J. Math. Kyoto Univ.
, vol.2
, pp. 227-235
-
-
McKean, H.P.1
-
26
-
-
84939730902
-
Mathematical analysis of random noise
-
MR G:89b
-
Rice, S.O. (1944). Mathematical analysis of random noise. Bell Syst. Techn. J. 23 282-332. MR G:89b
-
(1944)
Bell Syst. Techn. J.
, vol.23
, pp. 282-332
-
-
Rice, S.O.1
-
27
-
-
21844487711
-
Small ball probabilities of Gaussian fields
-
MR 96h:60069
-
Shao, Q.-M. and Wang, D. (1995). Small ball probabilities of Gaussian fields. Probab. Th. Rel. Fields 102 511-517. MR 96h:60069
-
(1995)
Probab. Th. Rel. Fields
, vol.102
, pp. 511-517
-
-
Shao, Q.-M.1
Wang, D.2
-
28
-
-
21444453887
-
(199G). Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times
-
MR 98b:60076
-
Shi, Z. (199G). Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times. J. Theoretical Probab. 9 915-929. MR 98b:60076
-
J. Theoretical Probab.
, vol.9
, pp. 915-929
-
-
Shi, Z.1
-
30
-
-
21344456608
-
Some small ball probabilities for Gaussian processes under non-uniform norms
-
MR 97h:60036
-
Stolz, W. (1996). Some small ball probabilities for Gaussian processes under non-uniform norms. J. Theoretical Probab. 9 613-630. MR 97h:60036
-
(1996)
J. Theoretical Probab.
, vol.9
, pp. 613-630
-
-
Stolz, W.1
-
31
-
-
0000251720
-
The small ball problem for the Brownian sheet
-
MR 95k:60049
-
Talagrand, M. (1994). The small ball problem for the Brownian sheet. Ann. Probab. 22 1331-1354. MR 95k:60049
-
(1994)
Ann. Probab.
, vol.22
, pp. 1331-1354
-
-
Talagrand, M.1
-
32
-
-
0000683728
-
A property of Brownian motion paths
-
MR 20:2795
-
Trotter, H.F. (1958). A property of Brownian motion paths. Illinois J. Math. 2 425-433. MR 20:2795
-
(1958)
Illinois J. Math.
, vol.2
, pp. 425-433
-
-
Trotter, H.F.1
-
33
-
-
33847689666
-
Some Aspects of Brownian Motion
-
Birkhäuser, Basel. MR 93i:60155
-
Yor, M. (1992). Some Aspects of Brownian Motion. Part I: Some Special Functionals. Birkhäuser, Basel. MR 93i:60155
-
(1992)
Part I: some Special Functionals.
-
-
Yor, M.1
|