-
1
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
Madden, T.L.2
Schaffer, A.A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.J.7
-
2
-
-
0033597878
-
Oxidative protein folding is driven by the electron transport system
-
Bader, M., Muse, W., Ballou, D.P., Gassner, C., and Bardwell, J.C. 1999. Oxidative protein folding is driven by the electron transport system. Cell 98: 217-227.
-
(1999)
Cell
, vol.98
, pp. 217-227
-
-
Bader, M.1
Muse, W.2
Ballou, D.P.3
Gassner, C.4
Bardwell, J.C.5
-
3
-
-
0034714289
-
Disulfide bonds are generated by quinone reduction
-
Bader, M.W., Xie, T., Yu, C.A., and Bardwell, J.C. 2000. Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275: 26082-26088.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 26082-26088
-
-
Bader, M.W.1
Xie, T.2
Yu, C.A.3
Bardwell, J.C.4
-
4
-
-
0027475212
-
A pathway for disulfide bond formation in vivo
-
Bardwell, J.C., Lee, J.O., Jander, G., Martin, N., Belin, D., and Beckwith, J. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. 90: 1038-1042.
-
(1993)
Proc. Natl. Acad. Sci.
, vol.90
, pp. 1038-1042
-
-
Bardwell, J.C.1
Lee, J.O.2
Jander, G.3
Martin, N.4
Belin, D.5
Beckwith, J.6
-
5
-
-
0034681340
-
ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum
-
Cabibbo, A., Pagani, M., Fabbri, M., Rocchi, M., Farmery, M.R., Bulleid, N.J., and Sitia, R. 2000. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 275: 4827-4833.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 4827-4833
-
-
Cabibbo, A.1
Pagani, M.2
Fabbri, M.3
Rocchi, M.4
Farmery, M.R.5
Bulleid, N.J.6
Sitia, R.7
-
6
-
-
0036224573
-
Oxidative protein folding in bacteria
-
Collet, J.F. and Bardwell, J.C. 2002. Oxidative protein folding in bacteria. Mol. Microbiol. 44: 1-8.
-
(2002)
Mol. Microbiol.
, vol.44
, pp. 1-8
-
-
Collet, J.F.1
Bardwell, J.C.2
-
7
-
-
0034673562
-
Regulation of the quiescence-induced genes: Quiescin Q6, decorin, and ribosomal protein S29
-
Coppock, D., Kopman, C., Gudas, J., and Cina-Poppe, D.A. 2000. Regulation of the quiescence-induced genes: quiescin Q6, decorin, and ribosomal protein S29. Biochem. Biophys. Res. Commun. 269: 604-610.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.269
, pp. 604-610
-
-
Coppock, D.1
Kopman, C.2
Gudas, J.3
Cina-Poppe, D.A.4
-
8
-
-
0034663597
-
Application of multiple sequence alignment profiles to improve protein secondary structure prediction
-
Cuff, J.A. and Barton, G.J. 2000. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40: 502-511.
-
(2000)
Proteins
, vol.40
, pp. 502-511
-
-
Cuff, J.A.1
Barton, G.J.2
-
9
-
-
0036186384
-
Formation, isomerisation and reduction of disulphide bonds during protein quality control in the endoplasmic reticulum
-
Fassio, A. and Sitia, R. 2002. Formation, isomerisation and reduction of disulphide bonds during protein quality control in the endoplasmic reticulum. Histochem. Cell Biol. 117: 151-157.
-
(2002)
Histochem. Cell Biol.
, vol.117
, pp. 151-157
-
-
Fassio, A.1
Sitia, R.2
-
10
-
-
0031609760
-
The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum
-
Frand, A.R. and Kaiser, C.A. 1998. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell 1: 161-170.
-
(1998)
Mol. Cell
, vol.1
, pp. 161-170
-
-
Frand, A.R.1
Kaiser, C.A.2
-
11
-
-
0033213605
-
Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum
-
_. 1999. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 4: 469-477.
-
(1999)
Mol. Cell
, vol.4
, pp. 469-477
-
-
-
12
-
-
0034494605
-
Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum
-
_. 2000. Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum. Mol. Biol. Cell 11: 2833-2843.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2833-2843
-
-
-
13
-
-
0028009149
-
SOPM: A self-optimized method for protein secondary structure prediction
-
Geourjon, C. and Deleage, G. 1994. SOPM: A self-optimized method for protein secondary structure prediction. Protein Eng. 7: 157-164.
-
(1994)
Protein Eng.
, vol.7
, pp. 157-164
-
-
Geourjon, C.1
Deleage, G.2
-
14
-
-
0035968186
-
Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family
-
Gerber, J., Muhlenhoff, U., Hofhaus, G., Lill, R., and Lisowsky, T. 2001. Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family. J. Biol. Chem. 276: 23486-23491.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 23486-23491
-
-
Gerber, J.1
Muhlenhoff, U.2
Hofhaus, G.3
Lill, R.4
Lisowsky, T.5
-
15
-
-
0042815104
-
Mechanism of the electron transfer catalyst DsbB from Escherichia coli
-
Grauschopf, U., Fritz, A., and Glockshuber, R. 2003. Mechanism of the electron transfer catalyst DsbB from Escherichia coli. EMBO J. 22: 3503-3513.
-
(2003)
EMBO J.
, vol.22
, pp. 3503-3513
-
-
Grauschopf, U.1
Fritz, A.2
Glockshuber, R.3
-
16
-
-
0036142325
-
A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p
-
Gross, E., Sevier, C.S., Vala, A., Kaiser, C.A., and Fass, D. 2002. A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nat. Struct. Biol. 9: 61-67.
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 61-67
-
-
Gross, E.1
Sevier, C.S.2
Vala, A.3
Kaiser, C.A.4
Fass, D.5
-
17
-
-
2542475140
-
Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell
-
Gross, E., Kastner, D.B., Kaiser, C.A., and Fass, D. 2004. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 117: 601-610.
-
(2004)
Cell
, vol.117
, pp. 601-610
-
-
Gross, E.1
Kastner, D.B.2
Kaiser, C.A.3
Fass, D.4
-
18
-
-
0028971218
-
Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA
-
Guilhot, C., Jander, G., Martin, N.L., and Beckwith, J. 1995. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc. Natl. Acad. Sci. 92: 9895-9899.
-
(1995)
Proc. Natl. Acad. Sci.
, vol.92
, pp. 9895-9899
-
-
Guilhot, C.1
Jander, G.2
Martin, N.L.3
Beckwith, J.4
-
19
-
-
0037119945
-
The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: Crystal structure of the DsbC-DsbDα complex
-
Haebel, P.W., Goldstone, D., Katzen, F., Beckwith, J., and Metcalf, P. 2002. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: Crystal structure of the DsbC-DsbDα complex. EMBO J. 21: 4774-4784.
-
(2002)
EMBO J.
, vol.21
, pp. 4774-4784
-
-
Haebel, P.W.1
Goldstone, D.2
Katzen, F.3
Beckwith, J.4
Metcalf, P.5
-
20
-
-
0033527552
-
Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases
-
Hoober, K.L., Glynn, N.M., Burnside, J., Coppock, D.L., and Thorpe, C. 1999. Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases. J. Biol. Chem. 274: 31759-31762.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 31759-31762
-
-
Hoober, K.L.1
Glynn, N.M.2
Burnside, J.3
Coppock, D.L.4
Thorpe, C.5
-
21
-
-
0037013828
-
Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade
-
Inaba, K. and Ito, K. 2002. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. EMBO J. 21: 2646-2654.
-
(2002)
EMBO J.
, vol.21
, pp. 2646-2654
-
-
Inaba, K.1
Ito, K.2
-
22
-
-
1342304093
-
DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation
-
Inaba, K., Takahashi, Y.H., Fujieda, N., Kano, K., Miyoshi, H., and Ito, K. 2004. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. J. Biol. Chem. 279: 6761-6768.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 6761-6768
-
-
Inaba, K.1
Takahashi, Y.H.2
Fujieda, N.3
Kano, K.4
Miyoshi, H.5
Ito, K.6
-
23
-
-
0028154918
-
Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation
-
Jander, G., Martin, N.L., and Beckwith, J. 1994. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J. 13: 5121-5127.
-
(1994)
EMBO J.
, vol.13
, pp. 5121-5127
-
-
Jander, G.1
Martin, N.L.2
Beckwith, J.3
-
24
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
Jones, D.T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292: 195-202.
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
25
-
-
0037093512
-
Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA
-
Kadokura, H. and Beckwith, J. 2002. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. EMBO J. 21: 2354-2363.
-
(2002)
EMBO J.
, vol.21
, pp. 2354-2363
-
-
Kadokura, H.1
Beckwith, J.2
-
26
-
-
0034718489
-
Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli
-
Kadokura, H., Bader, M., Tian, H., Bardwell, J.C., and Beckwith, J. 2000. Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc. Natl. Acad. Sci. 97: 10884-10889.
-
(2000)
Proc. Natl. Acad. Sci.
, vol.97
, pp. 10884-10889
-
-
Kadokura, H.1
Bader, M.2
Tian, H.3
Bardwell, J.C.4
Beckwith, J.5
-
27
-
-
0042768090
-
Protein disulfide bond formation in prokaryotes
-
Kadokura, H., Katzen, F., and Beckwith, J. 2003. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72: 111-135.
-
(2003)
Annu. Rev. Biochem.
, vol.72
, pp. 111-135
-
-
Kadokura, H.1
Katzen, F.2
Beckwith, J.3
-
28
-
-
0032438987
-
Hidden Markov models for detecting remote protein homologies
-
Karplus, K., Barrett, C., and Hughey, R. 1998. Hidden Markov models for detecting remote protein homologies. Bioinformatics 14: 846-856.
-
(1998)
Bioinformatics
, vol.14
, pp. 846-856
-
-
Karplus, K.1
Barrett, C.2
Hughey, R.3
-
29
-
-
0036682611
-
Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD
-
Katzen, F., Deshmukh, M., Daldal, F., and Beckwith, J. 2002. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 21: 3960-3969.
-
(2002)
EMBO J.
, vol.21
, pp. 3960-3969
-
-
Katzen, F.1
Deshmukh, M.2
Daldal, F.3
Beckwith, J.4
-
30
-
-
0030072669
-
Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli
-
Kishigami, S. and Ito, K. 1996. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli. Genes Cells 1: 201-208.
-
(1996)
Genes Cells
, vol.1
, pp. 201-208
-
-
Kishigami, S.1
Ito, K.2
-
31
-
-
0028948780
-
Redox states of DsbA in the periplasm of Escherichia coli
-
Kishigami, S., Akiyama, Y., and Ito, K. 1995a. Redox states of DsbA in the periplasm of Escherichia coli. FEBS Lett. 364: 55-58.
-
(1995)
FEBS Lett.
, vol.364
, pp. 55-58
-
-
Kishigami, S.1
Akiyama, Y.2
Ito, K.3
-
32
-
-
0029161150
-
DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA
-
Kishigami, S., Kanaya, E., Kikuchi, M., and Ito, K. 1995b. DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA. J. Biol. Chem. 270: 17072-17074.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17072-17074
-
-
Kishigami, S.1
Kanaya, E.2
Kikuchi, M.3
Ito, K.4
-
33
-
-
0033106153
-
Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway
-
Kobayashi, T. and Ito, K. 1999. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. EMBO J. 18: 1192-1198.
-
(1999)
EMBO J.
, vol.18
, pp. 1192-1198
-
-
Kobayashi, T.1
Ito, K.2
-
34
-
-
0030671552
-
Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells
-
Kobayashi, T., Kishigami, S., Sone, M., Inokuchi, H., Mogi, T., and Ito, K. 1997. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl. Acad. Sci. 94: 11857-11862.
-
(1997)
Proc. Natl. Acad. Sci.
, vol.94
, pp. 11857-11862
-
-
Kobayashi, T.1
Kishigami, S.2
Sone, M.3
Inokuchi, H.4
Mogi, T.5
Ito, K.6
-
35
-
-
0034647976
-
Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase
-
Lee, J., Hofhaus, G., and Lisowsky, T. 2000. Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett. 477: 62-66.
-
(2000)
FEBS Lett.
, vol.477
, pp. 62-66
-
-
Lee, J.1
Hofhaus, G.2
Lisowsky, T.3
-
36
-
-
0035076003
-
Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase
-
Lisowsky, T., Lee, J.E., Polimeno, L., Francavilla, A., and Hofhaus, G. 2001. Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig. Liver Dis. 33: 173-180.
-
(2001)
Dig. Liver Dis.
, vol.33
, pp. 173-180
-
-
Lisowsky, T.1
Lee, J.E.2
Polimeno, L.3
Francavilla, A.4
Hofhaus, G.5
-
37
-
-
0034044314
-
The PSIPRED protein structure prediction server
-
McGuffin, L.J., Bryson, K., and Jones, D.T. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405.
-
(2000)
Bioinformatics
, vol.16
, pp. 404-405
-
-
McGuffin, L.J.1
Bryson, K.2
Jones, D.T.3
-
38
-
-
0035890070
-
Manipulation of oxidative protein folding and PDI redox state in mammalian cells
-
Mezghrani, A., Fassio, A., Benham, A., Simmen, T., Braakman, I., and Sitia, R. 2001. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 20: 6288-6296.
-
(2001)
EMBO J.
, vol.20
, pp. 6288-6296
-
-
Mezghrani, A.1
Fassio, A.2
Benham, A.3
Simmen, T.4
Braakman, I.5
Sitia, R.6
-
39
-
-
0033933636
-
Cascaded multiple classifiers for secondary structure prediction
-
Ouali, M. and King, R.D. 2000. Cascaded multiple classifiers for secondary structure prediction. Protein Sci. 9: 1162-1176.
-
(2000)
Protein Sci.
, vol.9
, pp. 1162-1176
-
-
Ouali, M.1
King, R.D.2
-
40
-
-
0031610364
-
Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum
-
Pollard, M.G., Travers, K.J., and Weissman, J.S. 1998. Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1: 171-182.
-
(1998)
Mol. Cell
, vol.1
, pp. 171-182
-
-
Pollard, M.G.1
Travers, K.J.2
Weissman, J.S.3
-
41
-
-
32744472972
-
Porter: A new, accurate server for protein secondary structure prediction
-
e-pub Dec 7
-
Pollastri, G. and McLysaght, A. 2004. Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics e-pub Dec 7.
-
(2004)
Bioinformatics
-
-
Pollastri, G.1
McLysaght, A.2
-
42
-
-
0036568279
-
Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
Pollastri, G., Przybylski, D., Rost, B., and Baldi, P. 2002. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47: 228-235.
-
(2002)
Proteins
, vol.47
, pp. 228-235
-
-
Pollastri, G.1
Przybylski, D.2
Rost, B.3
Baldi, P.4
-
43
-
-
0037031882
-
DsbB catalyzes disulfide bond formation de novo
-
Regeimbal, J. and Bardwell, J.C. 2002. DsbB catalyzes disulfide bond formation de novo. J. Biol. Chem. 277: 32706-32713.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 32706-32713
-
-
Regeimbal, J.1
Bardwell, J.C.2
-
44
-
-
0027291015
-
Prediction of protein secondary structure at better than 70% accuracy
-
Rost, B. and Sander, C. 1993. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584-599.
-
(1993)
J. Mol. Biol.
, vol.232
, pp. 584-599
-
-
Rost, B.1
Sander, C.2
-
45
-
-
0028300741
-
Combining evolutionary information and neural networks to predict protein secondary structure
-
_. 1994. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55-72.
-
(1994)
Proteins
, vol.19
, pp. 55-72
-
-
-
46
-
-
0037076339
-
Complete pathway for protein disulfide bond formation encoded by poxviruses
-
Senkevich, T.G., White, C.L., Koonin, E.V., and Moss, B. 2002. Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc. Natl. Acad. Sci. 99: 6667-6672.
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, pp. 6667-6672
-
-
Senkevich, T.G.1
White, C.L.2
Koonin, E.V.3
Moss, B.4
-
47
-
-
0036842559
-
Formation and transfer of disulphide bonds in living cells
-
Sevier, C.S. and Kaiser, C.A. 2002. Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3: 836-847.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 836-847
-
-
Sevier, C.S.1
Kaiser, C.A.2
-
48
-
-
0034790475
-
A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation
-
Sevier, C.S., Cuozzo, J.W., Vala, A., Aslund, F., and Kaiser, C.A. 2001. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nat. Cell Biol. 3: 874-882.
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 874-882
-
-
Sevier, C.S.1
Cuozzo, J.W.2
Vala, A.3
Aslund, F.4
Kaiser, C.A.5
-
49
-
-
8744256714
-
Characterization of the menaquinone dependent disulfide bond formation pathway of Escherichia coli
-
Takahashi, Y., Inaba, K., and Ito, K. 2004. Characterization of the menaquinone dependent disulfide bond formation pathway of Escherichia coli. J. Biol. Chem. 279: 47057-47065.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47057-47065
-
-
Takahashi, Y.1
Inaba, K.2
Ito, K.3
-
50
-
-
0036715426
-
Sulfhydryl oxidases: Emerging catalysts of protein disulfide bond formation in eukaryotes
-
Thorpe, C., Hoober, K.L., Raje, S., Glynn, N.M., Burnside, J., Turi, G.K., and Coppock, D.L. 2002. Sulfhydryl oxidases: Emerging catalysts of protein disulfide bond formation in eukaryotes. Arch. Biochem. Biophys. 405: 1-12.
-
(2002)
Arch. Biochem. Biophys.
, vol.405
, pp. 1-12
-
-
Thorpe, C.1
Hoober, K.L.2
Raje, S.3
Glynn, N.M.4
Burnside, J.5
Turi, G.K.6
Coppock, D.L.7
-
51
-
-
0036862532
-
The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum
-
Tu, B.P. and Weissman, J.S. 2002. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 10: 983-994.
-
(2002)
Mol. Cell
, vol.10
, pp. 983-994
-
-
Tu, B.P.1
Weissman, J.S.2
-
52
-
-
0034711439
-
Biochemical basis of oxidative protein folding in the endoplasmic reticulum
-
Tu, B.P., Ho-Schleyer, S.C., Travers, K.J., and Weissman, J.S. 2000. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290: 1571-1574.
-
(2000)
Science
, vol.290
, pp. 1571-1574
-
-
Tu, B.P.1
Ho-Schleyer, S.C.2
Travers, K.J.3
Weissman, J.S.4
-
53
-
-
0037127202
-
Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B
-
Xie, T., Yu, L., Bader, M.W., Bardwell, J.C., and Yu, C.A. 2002. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B. J. Biol. Chem. 277: 1649-1652.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 1649-1652
-
-
Xie, T.1
Yu, L.2
Bader, M.W.3
Bardwell, J.C.4
Yu, C.A.5
|