메뉴 건너뛰기




Volumn 62, Issue 7, 2005, Pages 1157-1181

Periodic solutions for scalar functional differential equations

Author keywords

Numerical simulations; Periodic solution; Scalar differential equations; The Krsnoselskii fixed point theorem

Indexed keywords

ALGORITHMIC LANGUAGES; COMPUTER SIMULATION; FUNCTIONS; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; PROBLEM SOLVING; THEOREM PROVING;

EID: 22344445786     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2005.03.084     Document Type: Article
Times cited : (39)

References (22)
  • 1
    • 0742317417 scopus 로고    scopus 로고
    • Existence of positive periodic solutions for non-autonomous functional differential equations
    • S.S. Cheng, and G. Zhang Existence of positive periodic solutions for non-autonomous functional differential equations EJDE 59 2001 1 8
    • (2001) EJDE , vol.59 , pp. 1-8
    • Cheng, S.S.1    Zhang, G.2
  • 4
    • 0032168403 scopus 로고    scopus 로고
    • Optimal harvesting policy for single population with periodic coefficients
    • M. Fan, and K. Wang Optimal harvesting policy for single population with periodic coefficients Math. Biosci. 152 2 1998 165 177
    • (1998) Math. Biosci. , vol.152 , Issue.2 , pp. 165-177
    • Fan, M.1    Wang, K.2
  • 5
    • 0001459814 scopus 로고
    • Periodic solutions of single-species models with periodic delay
    • H.I. Freedmand, and J.H. Wu Periodic solutions of single-species models with periodic delay SIAM J. Math. Anal. 23 1992 689 701
    • (1992) SIAM J. Math. Anal. , vol.23 , pp. 689-701
    • Freedmand, H.I.1    Wu, J.H.2
  • 6
    • 0001648851 scopus 로고    scopus 로고
    • Almost periodic solutions of Lasota-Wazewska type delay differential equations
    • K. Gopalsamy, and S.I. Trofimchuk Almost periodic solutions of Lasota-Wazewska type delay differential equations J. Math. Anal. Appl. 237 1999 106 127
    • (1999) J. Math. Anal. Appl. , vol.237 , pp. 106-127
    • Gopalsamy, K.1    Trofimchuk, S.I.2
  • 7
  • 8
    • 2042532204 scopus 로고    scopus 로고
    • The existence of positive periodic solution of nonautonomous delay differential equation
    • D.Q. Jiang, and J.J. Wei The existence of positive periodic solution of nonautonomous delay differential equation China Ann. Math. 20A 6 1999 715 720
    • (1999) China Ann. Math. , vol.20 , Issue.6 , pp. 715-720
    • Jiang, D.Q.1    Wei, J.J.2
  • 9
    • 0347242222 scopus 로고    scopus 로고
    • Existence of positive periodic solutions for Volterra intergo-differential equations
    • D.Q. Jiang, and J.J. Wei Existence of positive periodic solutions for Volterra intergo-differential equations Acta Math. Sinica 21B 4 2001 553 560
    • (2001) Acta Math. Sinica , vol.21 , Issue.4 , pp. 553-560
    • Jiang, D.Q.1    Wei, J.J.2
  • 12
    • 0038011118 scopus 로고    scopus 로고
    • Existence and global attractivity of positive periodic solutions for a class of delay differential equations
    • Y.K. Li Existence and global attractivity of positive periodic solutions for a class of delay differential equations Chinese Sci. 28A 2 1998 108 118
    • (1998) Chinese Sci. , vol.28 , Issue.2 , pp. 108-118
    • Li, Y.K.1
  • 13
    • 0036679380 scopus 로고    scopus 로고
    • Global attractivity in a survival model of Wazewska and Lasota
    • J.W. Li, and S.S. Cheng Global attractivity in a survival model of Wazewska and Lasota Quart. Appl. Math. 60 3 2002 477 483
    • (2002) Quart. Appl. Math. , vol.60 , Issue.3 , pp. 477-483
    • Li, J.W.1    Cheng, S.S.2
  • 14
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control system
    • M.C. Mackey, and L. Glass Oscillation and chaos in physiological control system Science 197 1977 287 289
    • (1977) Science , vol.197 , pp. 287-289
    • MacKey, M.C.1    Glass, L.2
  • 16
    • 0000334087 scopus 로고
    • The balance of animal population
    • A.J. Nicholson The balance of animal population J. Animal Ecol. 2 1993 132 178
    • (1993) J. Animal Ecol. , vol.2 , pp. 132-178
    • Nicholson, A.J.1
  • 17
    • 4043147979 scopus 로고
    • A flexible growth function for empirical use
    • F.J. Richards A flexible growth function for empirical use J. Exp. Botany 10 29 1959 290
    • (1959) J. Exp. Botany , vol.10 , Issue.29 , pp. 290
    • Richards, F.J.1
  • 19
    • 3242889892 scopus 로고    scopus 로고
    • Existence of positive periodic solutions for functional differential equations
    • A.Y. Wan, and D.Q. Jiang Existence of positive periodic solutions for functional differential equations Kyush J. Math. 56 2002 193 202
    • (2002) Kyush J. Math. , vol.56 , pp. 193-202
    • Wan, A.Y.1    Jiang, D.Q.2
  • 20
    • 3543075159 scopus 로고    scopus 로고
    • Positive periodic solutions of functional differential equations
    • H.Y. Wang Positive periodic solutions of functional differential equations J. Differential Equations 202 2 2004 354 366
    • (2004) J. Differential Equations , vol.202 , Issue.2 , pp. 354-366
    • Wang, H.Y.1
  • 21
    • 0001995554 scopus 로고
    • Mathematical models of the red cell system
    • M. Wazewska-Czyzewska, and A. Lasota Mathematical models of the red cell system Mat. Stosowana 6 1976 25 40
    • (1976) Mat. Stosowana , vol.6 , pp. 25-40
    • Wazewska-Czyzewska, M.1    Lasota, A.2
  • 22
    • 0001995554 scopus 로고
    • Mathematical problems of the dynamics of the red blood cells system, Annals of the Polish Mathematical Society Series III
    • M. Wazewska-Czyzewska, and A. Lasota Mathematical problems of the dynamics of the red blood cells system, Annals of the Polish Mathematical Society Series III Appl. Math. 17 1976 23 40
    • (1976) Appl. Math. , vol.17 , pp. 23-40
    • Wazewska-Czyzewska, M.1    Lasota, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.