메뉴 건너뛰기




Volumn 461, Issue 2058, 2005, Pages 1627-1637

Multisymplectic conservation laws for differential and differential- difference equations

Author keywords

Conservation laws; Differential difference equations; Multisymplectic systems; Partial differential equations; Potential vorticity

Indexed keywords


EID: 22244479327     PISSN: 13645021     EISSN: 14712946     Source Type: Journal    
DOI: 10.1098/rspa.2004.1444     Document Type: Article
Times cited : (35)

References (17)
  • 1
    • 0025413862 scopus 로고
    • On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation
    • Ablowitz, M. J. & Herbst, B. M. 1990 On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math. 50, 339-351.
    • (1990) SIAM J. Appl. Math. , vol.50 , pp. 339-351
    • Ablowitz, M.J.1    Herbst, B.M.2
  • 2
    • 0016992794 scopus 로고
    • A nonlinear difference scheme and inverse scattering
    • Ablowitz, M. J. & Ladik, J. F. 1976 A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55, 213-229.
    • (1976) Stud. Appl. Math. , vol.55 , pp. 213-229
    • Ablowitz, M.J.1    Ladik, J.F.2
  • 3
    • 0034388725 scopus 로고    scopus 로고
    • Symmetry approach to the integrability problem
    • Adler, V. E., Shabat, A. B. & Yamilov, R. I. 2000 Symmetry approach to the integrability problem. Theor. Math. Phys. 125, 1603-1661.
    • (2000) Theor. Math. Phys. , vol.125 , pp. 1603-1661
    • Adler, V.E.1    Shabat, A.B.2    Yamilov, R.I.3
  • 4
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • Bridges, T. J. 1997a Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147-190.
    • (1997) Math. Proc. Camb. Philos. Soc. , vol.121 , pp. 147-190
    • Bridges, T.J.1
  • 5
    • 0030695841 scopus 로고    scopus 로고
    • A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
    • Bridges, T. J. 1997b A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. A 453, 1365-1395.
    • (1997) Proc. R. Soc. A , vol.453 , pp. 1365-1395
    • Bridges, T.J.1
  • 6
    • 0035582791 scopus 로고    scopus 로고
    • The symplectic Evans matrix, and the instability of solitary waves and fronts
    • Bridges, T. J. & Derks, G. 2001 The symplectic Evans matrix, and the instability of solitary waves and fronts. Arch. Rat. Mech. Anal. 156, 1-87.
    • (2001) Arch. Rat. Mech. Anal. , vol.156 , pp. 1-87
    • Bridges, T.J.1    Derks, G.2
  • 7
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that preserve symplecticity
    • Bridges, T. J. & Reich, S. 2001 Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that preserve symplecticity. Phys. Lett. 284A, 184-193.
    • (2001) Phys. Lett. , vol.284 A , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 8
    • 22244442343 scopus 로고    scopus 로고
    • Vorticity and symplecticity in Lagrangian fluid dynamics
    • Bridges, T. J., Hydon, P. E. & Reich, S. 2005 Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys. A 38, 1405-1418.
    • (2005) J. Phys. A , vol.38 , pp. 1405-1418
    • Bridges, T.J.1    Hydon, P.E.2    Reich, S.3
  • 9
    • 0026371083 scopus 로고
    • On the Lagrangian description of vorticity
    • Casey, J. & Naghdi, P. M. 1991 On the Lagrangian description of vorticity. Arch. Rat. Mech. Anal. 115, 1-14.
    • (1991) Arch. Rat. Mech. Anal. , vol.115 , pp. 1-14
    • Casey, J.1    Naghdi, P.M.2
  • 10
    • 0001746868 scopus 로고    scopus 로고
    • Computation of conserved densities for nonlinear lattices
    • Göktaş, U. & Hereman, W. 1998 Computation of conserved densities for nonlinear lattices. Physica 123D, 425-436.
    • (1998) Physica , vol.123 D , pp. 425-436
    • Göktaş, U.1    Hereman, W.2
  • 11
    • 0037932724 scopus 로고    scopus 로고
    • Algorithmic computation of higher-order symmetries for nonlinear evolution and lattice equations
    • Göktaş, U. & Hereman, W. 1999 Algorithmic computation of higher-order symmetries for nonlinear evolution and lattice equations. Adv. Comput. Math. 11, 55-80.
    • (1999) Adv. Comput. Math. , vol.11 , pp. 55-80
    • Göktaş, U.1    Hereman, W.2
  • 12
    • 0007064916 scopus 로고
    • Symmetries and conditional symmetries of differential-difference equations
    • Levi, D. & Winternitz, P. 1993 Symmetries and conditional symmetries of differential-difference equations. J. Math. Phys. 4, 3713-3730.
    • (1993) J. Math. Phys. , vol.4 , pp. 3713-3730
    • Levi, D.1    Winternitz, P.2
  • 13
    • 0030515403 scopus 로고    scopus 로고
    • Symmetries of discrete dynamical systems
    • Levi, D. & Winternitz, P. 1996 Symmetries of discrete dynamical systems. J. Math. Phys. 37, 5551-5576.
    • (1996) J. Math. Phys. , vol.37 , pp. 5551-5576
    • Levi, D.1    Winternitz, P.2
  • 14
    • 0001156359 scopus 로고
    • Canonical structure and symmetries for discrete systems
    • Maeda, S. 1980 Canonical structure and symmetries for discrete systems. Math. Jpn 4, 405-420.
    • (1980) Math. Jpn. , vol.4 , pp. 405-420
    • Maeda, S.1
  • 16
    • 0001467787 scopus 로고
    • Continuous symmetries of differential-difference equations: The Kac-van Moerbeke equation and Painlevé reduction
    • Quispel, G. R. W., Capel, H. W. & Sahadevan, R. 1992 Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction. Phys. Lett. 170A, 379-383.
    • (1992) Phys. Lett. , vol.170 A , pp. 379-383
    • Quispel, G.R.W.1    Capel, H.W.2    Sahadevan, R.3
  • 17
    • 0035440634 scopus 로고    scopus 로고
    • The relation between Beltrami's material vorticity and Rossby-Ertel's potential vorticity
    • Viúdez, Á. 2001 The relation between Beltrami's material vorticity and Rossby-Ertel's potential vorticity. J. Atmos. Sci. 58, 2509-2517.
    • (2001) J. Atmos. Sci. , vol.58 , pp. 2509-2517
    • Viúdez, Á.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.