-
1
-
-
0025413862
-
On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation
-
Ablowitz, M. J. & Herbst, B. M. 1990 On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math. 50, 339-351.
-
(1990)
SIAM J. Appl. Math.
, vol.50
, pp. 339-351
-
-
Ablowitz, M.J.1
Herbst, B.M.2
-
2
-
-
0016992794
-
A nonlinear difference scheme and inverse scattering
-
Ablowitz, M. J. & Ladik, J. F. 1976 A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55, 213-229.
-
(1976)
Stud. Appl. Math.
, vol.55
, pp. 213-229
-
-
Ablowitz, M.J.1
Ladik, J.F.2
-
3
-
-
0034388725
-
Symmetry approach to the integrability problem
-
Adler, V. E., Shabat, A. B. & Yamilov, R. I. 2000 Symmetry approach to the integrability problem. Theor. Math. Phys. 125, 1603-1661.
-
(2000)
Theor. Math. Phys.
, vol.125
, pp. 1603-1661
-
-
Adler, V.E.1
Shabat, A.B.2
Yamilov, R.I.3
-
4
-
-
0042137401
-
Multi-symplectic structures and wave propagation
-
Bridges, T. J. 1997a Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147-190.
-
(1997)
Math. Proc. Camb. Philos. Soc.
, vol.121
, pp. 147-190
-
-
Bridges, T.J.1
-
5
-
-
0030695841
-
A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
-
Bridges, T. J. 1997b A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. A 453, 1365-1395.
-
(1997)
Proc. R. Soc. A
, vol.453
, pp. 1365-1395
-
-
Bridges, T.J.1
-
6
-
-
0035582791
-
The symplectic Evans matrix, and the instability of solitary waves and fronts
-
Bridges, T. J. & Derks, G. 2001 The symplectic Evans matrix, and the instability of solitary waves and fronts. Arch. Rat. Mech. Anal. 156, 1-87.
-
(2001)
Arch. Rat. Mech. Anal.
, vol.156
, pp. 1-87
-
-
Bridges, T.J.1
Derks, G.2
-
7
-
-
0037832748
-
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that preserve symplecticity
-
Bridges, T. J. & Reich, S. 2001 Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that preserve symplecticity. Phys. Lett. 284A, 184-193.
-
(2001)
Phys. Lett.
, vol.284 A
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
8
-
-
22244442343
-
Vorticity and symplecticity in Lagrangian fluid dynamics
-
Bridges, T. J., Hydon, P. E. & Reich, S. 2005 Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys. A 38, 1405-1418.
-
(2005)
J. Phys. A
, vol.38
, pp. 1405-1418
-
-
Bridges, T.J.1
Hydon, P.E.2
Reich, S.3
-
9
-
-
0026371083
-
On the Lagrangian description of vorticity
-
Casey, J. & Naghdi, P. M. 1991 On the Lagrangian description of vorticity. Arch. Rat. Mech. Anal. 115, 1-14.
-
(1991)
Arch. Rat. Mech. Anal.
, vol.115
, pp. 1-14
-
-
Casey, J.1
Naghdi, P.M.2
-
10
-
-
0001746868
-
Computation of conserved densities for nonlinear lattices
-
Göktaş, U. & Hereman, W. 1998 Computation of conserved densities for nonlinear lattices. Physica 123D, 425-436.
-
(1998)
Physica
, vol.123 D
, pp. 425-436
-
-
Göktaş, U.1
Hereman, W.2
-
11
-
-
0037932724
-
Algorithmic computation of higher-order symmetries for nonlinear evolution and lattice equations
-
Göktaş, U. & Hereman, W. 1999 Algorithmic computation of higher-order symmetries for nonlinear evolution and lattice equations. Adv. Comput. Math. 11, 55-80.
-
(1999)
Adv. Comput. Math.
, vol.11
, pp. 55-80
-
-
Göktaş, U.1
Hereman, W.2
-
12
-
-
0007064916
-
Symmetries and conditional symmetries of differential-difference equations
-
Levi, D. & Winternitz, P. 1993 Symmetries and conditional symmetries of differential-difference equations. J. Math. Phys. 4, 3713-3730.
-
(1993)
J. Math. Phys.
, vol.4
, pp. 3713-3730
-
-
Levi, D.1
Winternitz, P.2
-
13
-
-
0030515403
-
Symmetries of discrete dynamical systems
-
Levi, D. & Winternitz, P. 1996 Symmetries of discrete dynamical systems. J. Math. Phys. 37, 5551-5576.
-
(1996)
J. Math. Phys.
, vol.37
, pp. 5551-5576
-
-
Levi, D.1
Winternitz, P.2
-
14
-
-
0001156359
-
Canonical structure and symmetries for discrete systems
-
Maeda, S. 1980 Canonical structure and symmetries for discrete systems. Math. Jpn 4, 405-420.
-
(1980)
Math. Jpn.
, vol.4
, pp. 405-420
-
-
Maeda, S.1
-
16
-
-
0001467787
-
Continuous symmetries of differential-difference equations: The Kac-van Moerbeke equation and Painlevé reduction
-
Quispel, G. R. W., Capel, H. W. & Sahadevan, R. 1992 Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction. Phys. Lett. 170A, 379-383.
-
(1992)
Phys. Lett.
, vol.170 A
, pp. 379-383
-
-
Quispel, G.R.W.1
Capel, H.W.2
Sahadevan, R.3
-
17
-
-
0035440634
-
The relation between Beltrami's material vorticity and Rossby-Ertel's potential vorticity
-
Viúdez, Á. 2001 The relation between Beltrami's material vorticity and Rossby-Ertel's potential vorticity. J. Atmos. Sci. 58, 2509-2517.
-
(2001)
J. Atmos. Sci.
, vol.58
, pp. 2509-2517
-
-
Viúdez, Á.1
|