-
2
-
-
0000494892
-
Higher order godunov methods for general systems of hyperbolic conservation laws
-
Bell J. B. Colella P. and Trangenstein J.A. "Higher Order Godunov methods for general systems of hyperbolic conservation laws." J. Comput. Phys 82 1989 362-397.
-
(1989)
J. Comput. Phys
, vol.82
, pp. 362-397
-
-
Bell, J.B.1
Colella, P.2
Trangenstein, J.A.3
-
3
-
-
0000065346
-
Implicit flux-limiting schemes for petroleum reservoir simulation
-
Blunt M. J. and Rubin B. "Implicit Flux-Limiting Schemes for Petroleum Reservoir Simulation". J. Comput. Phys 102 1992 194-210.
-
(1992)
J. Comput. Phys
, vol.102
, pp. 194-210
-
-
Blunt, M.J.1
Rubin, B.2
-
4
-
-
0027147291
-
Extension of the TVD mid-point scheme to higher order accuracy in time
-
SPE 25265 New Orleans Louisiana USA, Feb 28 - Mar 3
-
Rubin B. and Edwards M.G. "Extension of the TVD Mid-Point Scheme to Higher Order Accuracy in Time" SPE 25265 Twelfth SPE Reservoir Simulation Symposium, New Orleans Louisiana USA, pp 375-386, Feb 28 - Mar 3 1993
-
(1993)
Twelfth SPE Reservoir Simulation Symposium
, pp. 375-386
-
-
Rubin, B.1
Edwards, M.G.2
-
5
-
-
7244235109
-
A high resolution method coupled with local grid refinement for three dimensional aquifer remediation
-
Edwards M G. Delshad M. Pope G. A. and Sepehrnoori "A High Resolution Method Coupled with Local Grid refinement for Three Dimensional Aquifer Remediation" In Situ, 23, 4, pp 333-377, 1999
-
(1999)
Situ
, vol.23
, Issue.4
, pp. 333-377
-
-
Edwards, M.G.1
Delshad, M.2
Pope, G.A.3
Sepehrnoori4
-
7
-
-
0030135674
-
A higher order godunov scheme coupled with dynamic local grid refinement for flow in a porous medium
-
Edwards M.G. "A Higher Order Godunov Scheme Coupled With Dynamic Local Grid Refinement for Flow In a Porous Medium" Comput. Methods. Appl. Mech. Engrg, Vol 131, pp 287-308, 1996.
-
(1996)
Comput. Methods. Appl. Mech. Engrg
, vol.131
, pp. 287-308
-
-
Edwards, M.G.1
-
8
-
-
85114329546
-
Numerical approximation of hyperbolic systems of conservation laws
-
Springer-Verlag, New York
-
Godlewski E. and Raviart P. Numerical Approximation of Hyperbolic Systems of Conservation Laws App. Math. Sci. 118 Springer-Verlag, New York. 1996
-
(1996)
App. Math. Sci.
, vol.118
-
-
Godlewski, E.1
Raviart, P.2
-
9
-
-
85058200071
-
Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids
-
Liu X. D. and Osher S. "Convex ENO High Order Multi-Dimensional Schemes without Field by Field Decomposition or Staggered Grids" J. Comput. Phys 141, 1-27 1998
-
(1998)
J. Comput. Phys
, vol.141
, pp. 1-27
-
-
Liu, X.D.1
Osher, S.2
-
10
-
-
2442433925
-
Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method
-
Van Leer B. "Towards the Ultimate Conservative Difference Scheme, V. A second-order sequel to Godunov's method. J. Comput. Phys. 32 1979 101-136.
-
(1979)
J. Comput. Phys.
, vol.32
, pp. 101-136
-
-
Van Leer, B.1
-
11
-
-
0021513424
-
High resolution Schemes using flux limiters for hyperbolic conservation laws
-
Sweby P. K. "High resolution Schemes using Flux Limiters for Hyperbolic Conservation Laws" SIAM J. Numer. Anal. 21 1984995-1011.
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 995-1011
-
-
Sweby, P.K.1
-
12
-
-
45449125925
-
Efficient implementation of essentially non-oscillatory shock capturing schemes
-
Shu C. W. and Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes J.Comput. Phys, 77:439-471 1988.
-
(1988)
J.Comput. Phys
, vol.77
, pp. 439-471
-
-
Shu, C.W.1
Osher, S.2
|