메뉴 건너뛰기




Volumn 6, Issue 2, 2005, Pages 333-347

Application of pattern-mixture models to outcomes that are potentially missing not at random using pseudo maximum likelihood estimation

Author keywords

Missing data; MNAR; Pattern mixture model; Pseudo maximum likelihood

Indexed keywords

AGED; ARTICLE; COMPARATIVE STUDY; COMPUTER SIMULATION; DEMENTIA; EDUCATIONAL STATUS; FEMALE; HUMAN; MALE; PATIENT; STATISTICAL MODEL; UNITED STATES;

EID: 22144451514     PISSN: 14654644     EISSN: None     Source Type: Journal    
DOI: 10.1093/biostatistics/kxi013     Document Type: Article
Times cited : (9)

References (26)
  • 1
    • 0001216089 scopus 로고    scopus 로고
    • Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies
    • FITZMAURICE, G. M. AND LAIRD, N. M. (2000). Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 1, 141-156.
    • (2000) Biostatistics , vol.1 , pp. 141-156
    • Fitzmaurice, G.M.1    Laird, N.M.2
  • 2
    • 0016823810 scopus 로고
    • Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician
    • FOLSTEIN, M. F., FOLSTEIN, S. E. AND MCHUGH, P. R. (1975). Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12, 189-198.
    • (1975) Journal of Psychiatric Research , vol.12 , pp. 189-198
    • Folstein, M.F.1    Folstein, S.E.2    Mchugh, P.R.3
  • 3
    • 0034646205 scopus 로고    scopus 로고
    • Ten-year incidence of dementia in a rural elderly US community population: The MoVIES project
    • GANGULI, M., DODGE, H. H., CHEN, P., BELLE, S. AND DEKOSKY, S. T. (2000). Ten-year incidence of dementia in a rural elderly US community population: the MoVIES project. Neurology 54, 1109-1116.
    • (2000) Neurology , vol.54 , pp. 1109-1116
    • Ganguli, M.1    Dodge, H.H.2    Chen, P.3    Belle, S.4    Dekosky, S.T.5
  • 4
    • 0001300935 scopus 로고
    • Pseudo maximum likelihood methods: Theory
    • GOURIEROUX, C., MONFORT, A. AND TROGNON, A. (1984). Pseudo maximum likelihood methods: theory. Econometricu 52, 681-700.
    • (1984) Econometricu , vol.52 , pp. 681-700
    • Gourieroux, C.1    Monfort, A.2    Trognon, A.3
  • 5
    • 0000250716 scopus 로고
    • Specification tests in econometrics
    • HAUSMAN, J. A. (1978). Specification tests in econometrics. Econometrica 46, 1251-1272.
    • (1978) Econometrica , vol.46 , pp. 1251-1272
    • Hausman, J.A.1
  • 6
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • HOGAN, J. W. AND LAIRD, N. M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-258.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 7
    • 0037507563 scopus 로고    scopus 로고
    • Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable
    • IBRAHIM, J. G., CHEN, M. AND LIPSITZ, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88, 551-564.
    • (2001) Biometrika , vol.88 , pp. 551-564
    • Ibrahim, J.G.1    Chen, M.2    Lipsitz, S.R.3
  • 8
    • 1542341537 scopus 로고    scopus 로고
    • Pattern-mixture models with proper time dependence
    • KENWARD, M. G., MOLENBERGHS, G. AND THUS, H. (2003). Pattern-mixture models with proper time dependence. Biometrika 90, 53-71.
    • (2003) Biometrika , vol.90 , pp. 53-71
    • Kenward, M.G.1    Molenberghs, G.2    Thus, H.3
  • 10
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • LIANG, K. Y. AND ZEGER, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 12
    • 0001481349 scopus 로고
    • A three-stage estimator for studies with repeated and possibly missing binary outcomes
    • LIPSITZ, S. R., LAIRD, N. M. AND HARRINGTON, D. P. (1992). A three-stage estimator for studies with repeated and possibly missing binary outcomes. Applied Statistics 41, 203-213.
    • (1992) Applied Statistics , vol.41 , pp. 203-213
    • Lipsitz, S.R.1    Laird, N.M.2    Harrington, D.P.3
  • 14
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • LITTLE, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika 81, 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 15
  • 17
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • LITTLE, R. J. A. AND WANG, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 52, 98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 18
    • 0033571770 scopus 로고    scopus 로고
    • Simple pattern-mixture models for longitudinal data with missing observations: Analysis of urinary incontinence data
    • PARK, T. AND LEE, S. (1999). Simple pattern-mixture models for longitudinal data with missing observations: analysis of urinary incontinence data. Statistics in Medicine 18, 2933-2941.
    • (1999) Statistics in Medicine , vol.18 , pp. 2933-2941
    • Park, T.1    Lee, S.2
  • 19
    • 21844487694 scopus 로고
    • Semiparametric efficiency in multivariate regression models with missing data
    • ROBINS, J. M. AND ROTNITZKY, A. (1995). Semiparametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association 90, 122-129.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 122-129
    • Robins, J.M.1    Rotnitzky, A.2
  • 21
    • 0346733311 scopus 로고    scopus 로고
    • Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
    • ROY, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836.
    • (2003) Biometrics , vol.59 , pp. 829-836
    • Roy, J.1
  • 24
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • WEDDERBURN, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439-441.
    • (1974) Biometrika , vol.61 , pp. 439-441
    • Wedderburn, R.W.M.1
  • 25
    • 84950860747 scopus 로고
    • Consequences and detection of misspecified nonlinear regression models
    • WHITE, H. (1981). Consequences and detection of misspecified nonlinear regression models. Journal of the American Statistical Association 76, 419-433.
    • (1981) Journal of the American Statistical Association , vol.76 , pp. 419-433
    • White, H.1
  • 26
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • WHITE, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50, 1-25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.