-
1
-
-
38149148338
-
Quivers and the invariant theory of Levi subgroups
-
H. Aslaksen, Eng-Chye Tan and Chen-Bo Zhu, Quivers and the invariant theory of Levi subgroups, J. Functional Analysis 120 (1994), 163-187.
-
(1994)
J. Functional Analysis
, vol.120
, pp. 163-187
-
-
Aslaksen, H.1
Tan, E.-C.2
Zhu, C.-B.3
-
2
-
-
0003995122
-
-
Academic Press, New York-London
-
J.A. Dieudonné, J.B. Carrell, Invariant Theory, Old and New, Academic Press, New York-London, 1971.
-
(1971)
Invariant Theory, Old and New
-
-
Dieudonné, J.A.1
Carrell, J.B.2
-
3
-
-
51249165062
-
Polynomial invariants of representations of quivers
-
S. Donkin, Polynomial invariants of representations of quivers, Comment. Math. Helvetici 69 (1994), 137-141.
-
(1994)
Comment. Math. Helvetici
, vol.69
, pp. 137-141
-
-
Donkin, S.1
-
4
-
-
0041824033
-
Generating the ring of matrix invariants
-
Lecture Notes in Math. No. 1195, F. van Oystaeyen, ed. Springer-Verlag, Berlin
-
E. Formanek, Generating the ring of matrix invariants, Lecture Notes in Math. No. 1195, in "Ring-Theory-Proceedings, Antwerpen", 1985, F. van Oystaeyen, ed. Springer-Verlag, Berlin, 1986, pp. 73-82.
-
(1985)
Ring-Theory-Proceedings, Antwerpen
, pp. 73-82
-
-
Formanek, E.1
-
5
-
-
0003307738
-
The polynomial identities and invariants of n x n matrices
-
American Mathematical Society, Providence, Rhode Island
-
E. Formanek, The polynomial identities and invariants of n x n matrices, CBMS Regional Conference Series in Mathematics No.78, American Mathematical Society, Providence, Rhode Island, 1991.
-
(1991)
CBMS Regional Conference Series in Mathematics No.78
-
-
Formanek, E.1
-
6
-
-
0000377187
-
Wreath products and P.I. algebras
-
A. Giambruno and A. Regev, Wreath products and P.I. algebras, J. Pure Appl. Algebra 35 (1985), 133-149.
-
(1985)
J. Pure Appl. Algebra
, vol.35
, pp. 133-149
-
-
Giambruno, A.1
Regev, A.2
-
8
-
-
0011466956
-
Remarks on classical invariant theory
-
R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570.
-
(1989)
Trans. Amer. Math. Soc.
, vol.313
, pp. 539-570
-
-
Howe, R.1
-
9
-
-
37949027080
-
Invariant theory of block diagonal subgroups of Gl(n, ℂ) and generalized Casimir operators
-
W. H. Klink and Tuong Ton-That, Invariant theory of block diagonal subgroups of Gl(n, ℂ) and generalized Casimir operators, J. Algebra 145 (1992), 187-203.
-
(1992)
J. Algebra
, vol.145
, pp. 187-203
-
-
Klink, W.H.1
Ton-That, T.2
-
10
-
-
0000562777
-
r quivers
-
r quivers, Adv. in Math. 86 (1991), 235-262.
-
(1991)
Adv. in Math.
, vol.86
, pp. 235-262
-
-
Koike, K.1
-
11
-
-
0000879062
-
Semisimple representations of quivers
-
L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.
-
(1990)
Trans. Amer. Math. Soc.
, vol.317
, pp. 585-598
-
-
Le Bruyn, L.1
Procesi, C.2
-
12
-
-
0001637341
-
The invariant theory of n X n matrices
-
C. Procesi, The invariant theory of n X n matrices, Adv. in Math. 19 (1976), 306-381.
-
(1976)
Adv. in Math.
, vol.19
, pp. 306-381
-
-
Procesi, C.1
-
13
-
-
0000118705
-
Trace identities of full matrix algebras over a field of characteristic 0
-
Y. P. Rasmyslov, Trace identities of full matrix algebras over a field of characteristic 0, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723-756.
-
(1974)
Izv. Akad. Nauk SSSR Ser. Mat.
, vol.38
, pp. 723-756
-
-
Rasmyslov, Y.P.1
-
14
-
-
0000935426
-
The representations of wreath products via double centralizing theorems
-
A. Regev, The representations of wreath products via double centralizing theorems, J. Algebra 102 (1986), 423-443.
-
(1986)
J. Algebra
, vol.102
, pp. 423-443
-
-
Regev, A.1
-
15
-
-
34250495935
-
Algebraic invariants for a set of matrices
-
K. S. Siberskii, Algebraic invariants for a set of matrices, (Russian), Sib. Math. Zhurnal 9 (1968), 115-124.
-
(1968)
Sib. Math. Zhurnal
, vol.9
, pp. 115-124
-
-
Siberskii, K.S.1
-
16
-
-
0004109271
-
-
Princeton University Press, Princeton
-
H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1946.
-
(1946)
The Classical Groups
-
-
Weyl, H.1
|