-
1
-
-
27144528456
-
On a problem concerning moduli of smoothness
-
Colloquia Mathematica Societatis János Bolyai, Budapest, Hungary
-
J. Boman, On a problem concerning moduli of smoothness, in: Colloquia Mathematica Societatis János Bolyai, Fourier Analysis and Approximation, Proceedings of Conf., Budapest, Hungary (1976) pp. 273-179.
-
(1976)
Fourier Analysis and Approximation, Proceedings of Conf.
, pp. 273-1179
-
-
Boman, J.1
-
3
-
-
0029192321
-
Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale = 3
-
C.K. Chui and J.A. Lian, Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale = 3, Appl. Comput. Harmonic Anal. 2 (1995) 21-51.
-
(1995)
Appl. Comput. Harmonic Anal.
, vol.2
, pp. 21-51
-
-
Chui, C.K.1
Lian, J.A.2
-
4
-
-
0345469650
-
Orthonormal bases of compactly supported wavelets: III. Better frequency resolution
-
A. Cohen and I. Daubechies, Orthonormal bases of compactly supported wavelets: III. Better frequency resolution, SIAM J. Math. Anal. 24 (1993) 520-527.
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 520-527
-
-
Cohen, A.1
Daubechies, I.2
-
6
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909-996.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
8
-
-
0000160525
-
Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals
-
I. Daubechies and J.C. Lagarias, Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992) 1031-1079.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 1031-1079
-
-
Daubechies, I.1
Lagarias, J.C.2
-
10
-
-
38249036972
-
Moduli of smoothness using discrete data
-
Z. Ditzian, Moduli of smoothness using discrete data, J. Approx. Theory 49 (1987) 115-129.
-
(1987)
J. Approx. Theory
, vol.49
, pp. 115-129
-
-
Ditzian, Z.1
-
11
-
-
0040967838
-
Spectral radius formulas for subdivision operators
-
eds. L.L. Schumaker and G. Webb Academic Press, New York
-
T.N.T. Goodman, C.A. Micchelli and J.D. Ward, Spectral radius formulas for subdivision operators, in: Recent Advances in Wavelet Analysis, eds. L.L. Schumaker and G. Webb (Academic Press, New York, 1994) pp. 335-360.
-
(1994)
Recent Advances in Wavelet Analysis
, pp. 335-360
-
-
Goodman, T.N.T.1
Micchelli, C.A.2
Ward, J.D.3
-
12
-
-
27144550976
-
Multivariate refinement equations and convergence of subdivision schemes
-
to appear
-
B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. (1995, to appear).
-
(1995)
SIAM J. Math. Anal.
-
-
Han, B.1
Jia, R.-Q.2
-
15
-
-
27144485098
-
Characterization of smoothness of multivariate refinable functions in Sobolev spaces
-
to appear
-
R.-Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. (1996, to appear).
-
(1996)
Trans. Amer. Math. Soc.
-
-
Jia, R.-Q.1
|