메뉴 건너뛰기




Volumn 266, Issue 1-3, 1997, Pages 243-259

Consecutive-column and -row properties of matrices and the Loewner-Neville factorization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21944457296     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0024-3795(97)86523-8     Document Type: Article
Times cited : (26)

References (6)
  • 1
    • 0001366189 scopus 로고
    • Totally positive matrices
    • T. Ando, Totally positive matrices, Linear Algebra Appl. 90:165-219 (1987).
    • (1987) Linear Algebra Appl. , vol.90 , pp. 165-219
    • Ando, T.1
  • 2
    • 0002530383 scopus 로고
    • The LU factorization of totally positive matrices
    • C. W. Cryer, The LU factorization of totally positive matrices, Linear Algebra Appl. 7:83-92 (1973).
    • (1973) Linear Algebra Appl. , vol.7 , pp. 83-92
    • Cryer, C.W.1
  • 3
    • 38249011045 scopus 로고
    • Total positivity and Neville elimination
    • M. Gasca and J. M. Peña, Total positivity and Neville elimination, Linear Algebra Appl. 165:25-44 (1992).
    • (1992) Linear Algebra Appl. , vol.165 , pp. 25-44
    • Gasca, M.1    Peña, J.M.2
  • 4
    • 38149146358 scopus 로고    scopus 로고
    • A matricial description of Neville elimination with applications to total positivity
    • M. Gasca and J. M. Peña, A matricial description of Neville elimination with applications to total positivity, Linear Algebra Appl. 202:33-53.
    • Linear Algebra Appl. , vol.202 , pp. 33-53
    • Gasca, M.1    Peña, J.M.2
  • 5
    • 0000740693 scopus 로고
    • On totally positive matrices
    • K. Loewner, On totally positive matrices, Math. Z. 63:338-340 (1955).
    • (1955) Math. Z. , vol.63 , pp. 338-340
    • Loewner, K.1
  • 6
    • 51249168759 scopus 로고
    • A reduction theorem for totally positive matrices
    • A. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math. 2:88-92 (1952).
    • (1952) J. Anal. Math. , vol.2 , pp. 88-92
    • Whitney, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.