-
1
-
-
0010960817
-
Interior gradient blow-up in a semilinear parabolic equation
-
MR97e:35088
-
S.B.Angenent and M.Fila, Interior gradient blow-up in a semilinear parabolic equation, Diff. Integral Eqs. 9 (1996), 865-877MR97e:35088
-
(1996)
Diff. Integral Eqs.
, vol.9
, pp. 865-877
-
-
Angenent, S.B.1
Fila, M.2
-
3
-
-
0040125299
-
Examples of parabolic problems with blowing-up derivatives
-
MR91k:35133
-
T.Dlotko, Examples of parabolic problems with blowing-up derivatives, J. Diff. Eqs. 154 (1991), 226-237MR91k:35133
-
(1991)
J. Diff. Eqs.
, vol.154
, pp. 226-237
-
-
Dlotko, T.1
-
4
-
-
84972499994
-
Derivative blow-up and beyond for quasilinear parabolic equations
-
MR95c:35121
-
M.Fila and G.M.Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Diff. Integral Eqs. 7 (1994), 811-821MR95c:35121
-
(1994)
Diff. Integral Eqs.
, vol.7
, pp. 811-821
-
-
Fila, M.1
Lieberman, G.M.2
-
6
-
-
0040719134
-
Interior derivative blow-up for quasilinear parabolic equations
-
MR96i:35065
-
Y.Giga, Interior derivative blow-up for quasilinear parabolic equations, Discrete Conti. Dyn. Syst. l (1995), 449-461MR96i:35065
-
(1995)
Discrete Conti. Dyn. Syst.
, vol.50
, pp. 449-461
-
-
Giga, Y.1
-
8
-
-
33646983849
-
Existence of symmetric capillary surfaces via curvature evolution
-
MR94m:35144
-
N.Ishimura, Existence of symmetric capillary surfaces via curvature evolution, J. Fac. Sci. Univ. Tokyo Sect. IA 40 (1993), 419-427MR94m:35144
-
(1993)
J. Fac. Sci. Univ. Tokyo Sect. IA
, vol.40
, pp. 419-427
-
-
Ishimura, N.1
-
9
-
-
0038941247
-
-
Eds. C.Bandle, J.Bemelmans, M.Chipot and M.Grüter, Longman, CMP 93:04
-
N.Kutev, Global solvability and boundary gradient blow up for one dimensional parabolic equations, in "Progress in Partial Differential Equations : Elliptic and Parabolic Problems," Eds. C.Bandle, J.Bemelmans, M.Chipot and M.Grüter, Longman, 1992, pp. 176-181. CMP 93:04
-
(1992)
Global solvability and boundary gradient blow up for one dimensional parabolic equations, in "Progress in Partial Differential Equations : Elliptic and Parabolic Problems,"
, pp. 176-181
-
-
Kutev, N.1
-
10
-
-
33646972816
-
Gradient blow-ups and global solvability after the blow-up time for nonlinear parabolic equations
-
Eds. P.Clement and G.Lumer, Marcel Dekker, New York, MR94m:35132
-
N.Kutev, Gradient blow-ups and global solvability after the blow-up time for nonlinear parabolic equations, in "Evolution Equations, Control Theory and Biomathematics," Eds. P.Clement and G.Lumer, Marcel Dekker, New York, 1994, pp. 301-306MR94m:35132
-
(1994)
Evolution Equations, Control Theory and Biomathematics
, pp. 301-306
-
-
Kutev, N.1
-
11
-
-
0001358269
-
The problem, of Dirichlet for quasilinear elliptic differential equations with many independent variables
-
MR43:7772
-
J.Serrin, The problem, of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413-496MR43:7772
-
(1969)
Philos. Trans. Roy. Soc. London Ser. a
, vol.264
, pp. 413-496
-
-
Serrin, J.1
-
12
-
-
84972563054
-
Evolutionary existence proofs for the pendent drops and n- Dimensional catenary problems
-
MR95c:35109
-
A.Stone, Evolutionary existence proofs for the pendent drops and n- dimensional catenary problems, Pacific J. Math. 164 (1994), 147-178MR95c:35109
-
(1994)
Pacific J. Math.
, vol.164
, pp. 147-178
-
-
Stone, A.1
|