-
1
-
-
4344560363
-
Clustering very large databases using EM mixture models
-
P. Bradley, U. Fayyad, and C. Reina. Clustering very large databases using EM mixture models. In ICPR'00, volume 2, pages 76-80, 2000.
-
(2000)
ICPR'00
, vol.2
, pp. 76-80
-
-
Bradley, P.1
Fayyad, U.2
Reina, C.3
-
2
-
-
0034592783
-
A general probabilistic framework for clustering individuals
-
I. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework for clustering individuals. In KDD-2000, pages 140-149, 2000.
-
(2000)
KDD-2000
, pp. 140-149
-
-
Cadez, I.1
Gaffney, S.2
Smyth, P.3
-
3
-
-
0002607026
-
Bayesian classification (Auto-Class): Theory and results
-
U. M. Fayyad and et al., editors
-
P. Cheeseman and J. Stutz. Bayesian classification (Auto-Class): Theory and results. In U. M. Fayyad and et al., editors, Advances in Knowledge Discovery and Data Mining, pages 153-180, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
4
-
-
0035788889
-
A robust and scalable clustering algorithm for mixed type attributes in large database environment
-
T. Chiu, D. Fang, J. Chen, Y. Wang, and C. Jeris. A robust and scalable clustering algorithm for mixed type attributes in large database environment. In KDD-2001, pages 263-268, 2001.
-
(2001)
KDD-2001
, pp. 263-268
-
-
Chiu, T.1
Fang, D.2
Chen, J.3
Wang, Y.4
Jeris, C.5
-
5
-
-
0002327647
-
Squashing flat files flatter
-
W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon. Squashing flat files flatter. In KDD-1999, pages 6-15, 1999.
-
(1999)
KDD-1999
, pp. 6-15
-
-
DuMouchel, W.1
Volinsky, C.2
Johnson, T.3
Cortes, C.4
Pregibon, D.5
-
6
-
-
0032131702
-
Algorithms for model-based Gaussian hierarchical clustering
-
Jan.
-
C. Fraley. Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific Computing, 20(1):270-281, Jan. 1999.
-
(1999)
SIAM Journal on Scientific Computing
, vol.20
, Issue.1
, pp. 270-281
-
-
Fraley, C.1
-
10
-
-
0034826101
-
An experimental comparison of model-based clustering methods
-
M. Meilǎ and D. Heckerman. An experimental comparison of model-based clustering methods. Machine Learning, 42(1/2):9-29, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 9-29
-
-
Meilǎ, M.1
Heckerman, D.2
-
11
-
-
84899029127
-
Very fast EM-based mixture model clustering using multiresolution KD-trees
-
A. Moore. Very fast EM-based mixture model clustering using multiresolution KD-trees. In NIPS'99, pages543-549, 1999.
-
(1999)
NIPS'99
, pp. 543-549
-
-
Moore, A.1
-
12
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In VLDB'94, pages 144-155, 1994.
-
(1994)
VLDB'94
, pp. 144-155
-
-
Ng, R.T.1
Han, J.2
-
13
-
-
0040438433
-
Density biased sampling: An improved method for data mining and clustering
-
C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method for data mining and clustering. In SIGMOD-2000, pages 82-92, 2000.
-
(2000)
SIGMOD-2000
, pp. 82-92
-
-
Palmer, C.R.1
Faloutsos, C.2
-
14
-
-
0002678075
-
Compressed data cubes for OLAP aggregate query approximation on continuous dimensions
-
J. Shanmugasundaram, U. Fayyad, and P. S. Bradley. Compressed data cubes for OLAP aggregate query approximation on continuous dimensions. In KDD-1999, pages 223-232, 1999.
-
(1999)
KDD-1999
, pp. 223-232
-
-
Shanmugasundaram, J.1
Fayyad, U.2
Bradley, P.S.3
-
16
-
-
21944442892
-
BIRCH: A new data clustering algorithm and its applications
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):141-182, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.2
, pp. 141-182
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|