-
1
-
-
0027696338
-
Using genetic algorithms for concept learning
-
K. A. De Jong, W. M. Spears, and F. D. Gordon. Using genetic algorithms for concept learning. Machine Learning, 13:161-188, 1993.
-
(1993)
Machine Learning
, vol.13
, pp. 161-188
-
-
Jong, K.A.1
Spears, W.M.2
Gordon, F.D.3
-
2
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. 0Machine Learning, 40:139-158, 2000.
-
(2000)
Machine Learning
, vol.40
, pp. 139-158
-
-
Dietterich, T.1
-
3
-
-
0002032320
-
A comparative review of selected methods for learning from examples
-
J.G. Carbonell, R.S. Michalski, and T. Mitchell, editors, Morgan Kaufmann
-
T.G. Dietterich and R.S. Michalski. A comparative review of selected methods for learning from examples. In J.G. Carbonell, R.S. Michalski, and T. Mitchell, editors, Machine Learning, an Artificial Intelligence Approach. Morgan Kaufmann, 1983.
-
(1983)
Machine Learning, an Artificial Intelligence Approach
-
-
Dietterich, T.G.1
Michalski, R.S.2
-
4
-
-
0000662737
-
Search-intensive concept induction
-
A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Computation, 3 (4):375-416, 1995.
-
(1995)
Evolutionary Computation
, vol.3
, Issue.4
, pp. 375-416
-
-
Giordana, A.1
Neri, F.2
-
5
-
-
0003722376
-
-
Addison-Wesley, Reading, Ma
-
D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Ma, 1989.
-
(1989)
Genetic Algorithms in Search, Optimization, and Machine Learning
-
-
Goldberg, D.1
-
7
-
-
0000157651
-
Co-evolving parasites improve simulated evolution as an optimization procedure
-
Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Addison-Wesley, Santa Fe Institute, New Mexico, USA, 1990
-
W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Artificial Life II, volume X, pages 313-324. Addison-Wesley, Santa Fe Institute, New Mexico, USA, 1990 1992.
-
(1992)
Artificial Life II
, vol.10
, pp. 313-324
-
-
Hillis, W.D.1
-
9
-
-
0002448383
-
Concept learning and the problem of small disjuncts
-
Detroit, MI
-
R. Holte, L. Acker, and B. Porter. Concept learning and the problem of small disjuncts. In 11th International Joint Conference on Artificial Intelligence, pages 813-818, Detroit, MI, 1989.
-
(1989)
11th International Joint Conference on Artificial Intelligence
, pp. 813-818
-
-
Holte, R.1
Acker, L.2
Porter, B.3
-
10
-
-
0001957362
-
A theoretical investigation of a parallel genetic algorithm
-
Fairfax, VA, Morgan Kaufmann
-
P. Husbands and F. Mill. A theoretical investigation of a parallel genetic algorithm. In Fourth International Conference on Genetic Algorithms, pages 264-270, Fairfax, VA, 1991. Morgan Kaufmann.
-
(1991)
Fourth International Conference on Genetic Algorithms
, pp. 264-270
-
-
Husbands, P.1
Mill, F.2
-
11
-
-
0027696178
-
A knowledge intensive genetic algorithm for supervised learning
-
C.Z. Janikow. A knowledge intensive genetic algorithm for supervised learning. Machine Learning, 13:198-228, 1993.
-
(1993)
Machine Learning
, vol.13
, pp. 198-228
-
-
Janikow, C.Z.1
-
12
-
-
21944446252
-
Theories for mutagenecity: A study in first order and feature based induction
-
R. S. King, S. Muggleton, R. A. Lewis, and M. J. E. Sternberg. Theories for mutagenecity: a study in first order and feature based induction. Artificial Intelligence, 74, 1995.
-
(1995)
Artificial Intelligence
, vol.74
-
-
King, R.S.1
Muggleton, S.2
Lewis, R.A.3
Sternberg, M.J.E.4
-
13
-
-
85141038051
-
Mining audit data to build intrusion detection models
-
Fairfax, VA
-
W. Lee, S. Stolfo, and K. W. Mok. Mining audit data to build intrusion detection models. In Knowledge discovery in databases 1998, pages 66-72, Fairfax, VA, 1998.
-
(1998)
Knowledge Discovery in Databases 1998
, pp. 66-72
-
-
Lee, W.1
Stolfo, S.2
Mok, K.W.3
-
14
-
-
85005299854
-
The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
-
Philadelphia, PA
-
R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Fifth National Conference on Artificial Intelligence, pages 1041-1045, Philadelphia, PA, 1986.
-
(1986)
Fifth National Conference on Artificial Intelligence
, pp. 1041-1045
-
-
Michalski, R.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
16
-
-
21944443806
-
Comparing local search with respect to genetic evolution to detect intrusions in computer networks
-
IEEE Press
-
F. Neri. Comparing local search with respect to genetic evolution to detect intrusions in computer networks. In Congress on Evolutionary Computation 2000, pages 512-517, IEEE Press, 2000.
-
(2000)
Congress on Evolutionary Computation 2000
, pp. 512-517
-
-
Neri, F.1
-
19
-
-
0001172265
-
Learning logical definitions from relations
-
J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-266, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 239-266
-
-
Quinlan, J.R.1
-
21
-
-
21944451096
-
Oversearching and layered search in empirical learning
-
Lake Tahoe, CA
-
R. Quinlan. Oversearching and layered search in empirical learning. In International Conference on Machine Learning, Lake Tahoe, CA, 1995.
-
(1995)
International Conference on Machine Learning
-
-
Quinlan, R.1
-
22
-
-
84880692052
-
A brief introduction to boosting
-
R. E. Schapire. A brief introduction to boosting, pages 1401-1406, 1999.
-
(1999)
, pp. 1401-1406
-
-
Schapire, R.E.1
-
23
-
-
0004161512
-
Concept acquisition through representational adjustement
-
Technical Report TR 87-19, Dept. of Information and Computer Science, University of Californina, Irvine, CA
-
J. S. Schlimmer. Concept acquisition through representational adjustement. Technical Report TR 87-19, Dept. of Information and Computer Science, University of Californina, Irvine, CA, 1987.
-
(1987)
-
-
Schlimmer, J.S.1
-
24
-
-
2542590449
-
Does data-mod co-evolution improve generalization performances of evolving learners?
-
LNCS 1498
-
J. L. Shapiro. Does data-mod co-evolution improve generalization performances of evolving learners? Lecture Notes in Computer Science, LNCS 1498:540-549, 1998.
-
(1998)
Lecture Notes in Computer Science
, pp. 540-549
-
-
Shapiro, J.L.1
|