메뉴 건너뛰기




Volumn 4, Issue 2, 2005, Pages 76-81

Choice of the regularization parameter in ill-posed problems with rough estimate of the noise level of data

Author keywords

Convergence; Discrepancy principle; Ill posed problem; L curve; Noise level; Parameter choice; Regularization

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; ESTIMATION; HEURISTIC METHODS; ITERATIVE METHODS; MATHEMATICAL OPERATORS;

EID: 21944449591     PISSN: 11092769     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (19)
  • 1
    • 0013178793 scopus 로고
    • Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion
    • A. Bakushinskii, Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion. U.S.S.R. Comput. Math. Math. Physics, Vol.24, No. 4, 1984, pp. 181-182.
    • (1984) U.S.S.R. Comput. Math. Math. Physics , vol.24 , Issue.4 , pp. 181-182
    • Bakushinskii, A.1
  • 2
    • 84966214028 scopus 로고
    • An a-posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates
    • H. Gfrerer, An a-posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates, Math. Comp., Vol.49, No.180, 1987, pp. 507-522.
    • (1987) Math. Comp. , vol.49 , Issue.180 , pp. 507-522
    • Gfrerer, H.1
  • 3
    • 0031498439 scopus 로고    scopus 로고
    • Generalized cross-validation for large-scale problems
    • G. H. Golub, Urs. von Matt, Generalized cross-validation for large-scale problems. J. Comput. Graph. Statist., Vol.6, No.1, 1997, pp. 1-34.
    • (1997) J. Comput. Graph. Statist. , vol.6 , Issue.1 , pp. 1-34
    • Golub, G.H.1    von Matt, Urs.2
  • 4
    • 21944442533 scopus 로고    scopus 로고
    • On regularization parameter choice for solving self-adjoint ill-posed problems with approximately given noise level of data
    • U. Hämarik, T. Raus, On regularization parameter choice for solving self-adjoint ill-posed problems with approximately given noise level of data, Proc. Estonian Acad. Sci. Phys. Math., Vol.53, No.2, 2004, pp. 77-83.
    • (2004) Proc. Estonian Acad. Sci. Phys. Math. , vol.53 , Issue.2 , pp. 77-83
    • Hämarik, U.1    Raus, T.2
  • 6
    • 21944442815 scopus 로고    scopus 로고
    • On the monotone error rule for parameter choice in iterative and continuous regularization methods
    • U. Hämarik, U. Tautenhahn, On the monotone error rule for parameter choice in iterative and continuous regularization methods, BIT, Vol.41, No.5, 2001, pp. 1029-1038.
    • (2001) BIT , vol.41 , Issue.5 , pp. 1029-1038
    • Hämarik, U.1    Tautenhahn, U.2
  • 7
    • 0042208667 scopus 로고    scopus 로고
    • A general heuristic for choosing the regularization parameter in ill-posed problems
    • M. Hanke, T. Raus, A general heuristic for choosing the regularization parameter in ill-posed problems, SIAM J. Sci. Comput., Vol.17, No.4, 1996, pp. 954-972..
    • (1996) SIAM J. Sci. Comput. , vol.17 , Issue.4 , pp. 954-972
    • Hanke, M.1    Raus, T.2
  • 8
    • 0000570697 scopus 로고
    • Analysis of discrete ill-posed problems by means of the L-curve
    • P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., Vol.34, No.4, 1992, pp. 561-580.
    • (1992) SIAM Rev. , vol.34 , Issue.4 , pp. 561-580
    • Hansen, P.C.1
  • 9
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • V. Morozov, On the solution of functional equations by the method of regularization, Soviet Math. Dokl., Vol.7, 1966, pp. 414-417.
    • (1966) Soviet Math. Dokl. , vol.7 , pp. 414-417
    • Morozov, V.1
  • 10
    • 0008325004 scopus 로고
    • Residual principle for ill-posed problems
    • (in Russian)
    • T. Raus, Residual principle for ill-posed problems, Acta Comment. Univ. Tartuensis, Vol.672, 1984, pp. 16-26 (in Russian).
    • (1984) Acta Comment. Univ. Tartuensis , vol.672 , pp. 16-26
    • Raus, T.1
  • 11
    • 0002729317 scopus 로고
    • On the discrepancy principle for solution of ill-posed problems with non-selfadjoint operators
    • (in Russian)
    • T. Raus, On the discrepancy principle for solution of ill-posed problems with non-selfadjoint operators, Acta Comment. Univ. Tartuensis, Vol.715, 1985, pp. 12-20 (in Russian).
    • (1985) Acta Comment. Univ. Tartuensis , vol.715 , pp. 12-20
    • Raus, T.1
  • 12
    • 21944436340 scopus 로고
    • An a posteriori choice of the regularization parameter in case of approximately given error bound of data
    • T. Raus, An a posteriori choice of the regularization parameter in case of approximately given error bound of data, Acta Comment. Univ. Tartuensis, Vol.913, 1990, pp. 73-87.
    • (1990) Acta Comment. Univ. Tartuensis , vol.913 , pp. 73-87
    • Raus, T.1
  • 13
    • 5844390290 scopus 로고
    • About regularization parameter choice in case of approximately given error bounds of data
    • T. Raus, About regularization parameter choice in case of approximately given error bounds of data, Acta Comment. Univ. Tartuensis, Vol.937, 1992, pp. 77-89.
    • (1992) Acta Comment. Univ. Tartuensis , vol.937 , pp. 77-89
    • Raus, T.1
  • 14
    • 0013298158 scopus 로고    scopus 로고
    • The use of monotonicity for choosing the regularization parameter in ill-posed problems
    • U. Tautenhahn, U. Hämarik, The use of monotonicity for choosing the regularization parameter in ill-posed problems, Inverse Problems, Vol.15, No.6, 1999, pp. 1487-1505.
    • (1999) Inverse Problems , vol.15 , Issue.6 , pp. 1487-1505
    • Tautenhahn, U.1    Hämarik, U.2
  • 15
    • 0008442191 scopus 로고
    • Use of the regularization method in non-linear problems
    • A. N. Tikhonov, V. B. Glasko, Use of the regularization method in non-linear problems, USSR Comput. Math. Math. Phys., Vol.5, No.3, 1965, pp. 93-107.
    • (1965) USSR Comput. Math. Math. Phys. , vol.5 , Issue.3 , pp. 93-107
    • Tikhonov, A.N.1    Glasko, V.B.2
  • 17
    • 0011481293 scopus 로고
    • The discrepancy principle for a class of regularization methods
    • G. Vainikko, The discrepancy principle for a class of regularization methods, U.S.S.R. Comput. Math. Math. Phys., Vol.22, No.3, 1982, pp. 1-19.
    • (1982) U.S.S.R. Comput. Math. Math. Phys. , vol.22 , Issue.3 , pp. 1-19
    • Vainikko, G.1
  • 19
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • G. Wahba, Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal., Vol.14, No.4, 1977, pp. 651-657.
    • (1977) SIAM J. Numer. Anal. , vol.14 , Issue.4 , pp. 651-657
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.