-
1
-
-
4344589801
-
On the diameter of the generalized numerical range
-
Aleksiejczyk, M. (1997). On the diameter of the generalized numerical range, Demonstratio Math., 30, 129-136.
-
(1997)
Demonstratio Math.
, vol.30
, pp. 129-136
-
-
Aleksiejczyk, M.1
-
2
-
-
84966234626
-
An extension of the Hausdorff-Toeplitz theorem on the numerical range
-
Au-Yeung, Y. H. and Tsing, N. K. (1983). An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc., 89, 215-218.
-
(1983)
Proc. Amer. Math. Soc.
, vol.89
, pp. 215-218
-
-
Au-Yeung, Y.H.1
Tsing, N.K.2
-
3
-
-
0001185157
-
Joint ranges of hermitian matrices and simultaneous diagonalization
-
Binding, P. and Li, C. K. (1991). Joint ranges of hermitian matrices and simultaneous diagonalization, Linear Algebra Appl., 151, 157-168.
-
(1991)
Linear Algebra Appl.
, vol.151
, pp. 157-168
-
-
Binding, P.1
Li, C.K.2
-
5
-
-
0038547537
-
The shell of a Hilbert space operator. I and II
-
Davis, C. The shell of a Hilbert space operator. I and II, Acta Sci. Math., 29 (1968), 69-86;
-
(1968)
Acta Sci. Math.
, vol.29
, pp. 69-86
-
-
Davis, C.1
-
7
-
-
0004055957
-
-
Benjamin, Massachusetts, London
-
Fulton, W. (1969). Algebraic Curves, Benjamin, Massachusetts, London.
-
(1969)
Algebraic Curves
-
-
Fulton, W.1
-
10
-
-
0041937095
-
Some convexity theorems for the generalized numerical ranges
-
Li, C. K. (1996). Some convexity theorems for the generalized numerical ranges, Linear and Multilinear Algebra, 40, 235-240.
-
(1996)
Linear and Multilinear Algebra
, vol.40
, pp. 235-240
-
-
Li, C.K.1
-
11
-
-
26444578436
-
q-numerical range of normal and convex matrices
-
to appear
-
Li, C. K. q-numerical range of normal and convex matrices, Linear and Multilinear Algebra, to appear.
-
Linear and Multilinear Algebra
-
-
Li, C.K.1
-
12
-
-
0039377795
-
A generalized numerical range: The range of a constrained sesquilinear form
-
Li, C. K., Mehta, P. P. and Rodman, L. (1994). A generalized numerical range: The range of a constrained sesquilinear form, Linear and Multilinear Algebra, 37, 25-50.
-
(1994)
Linear and Multilinear Algebra
, vol.37
, pp. 25-50
-
-
Li, C.K.1
Mehta, P.P.2
Rodman, L.3
-
13
-
-
84968464957
-
Matrices with circular symmetry on their unitary orbits and C-numerical ranges
-
Li, C. K. and Tsing, N. K. (1991). Matrices with circular symmetry on their unitary orbits and C-numerical ranges, Proc. Amer. Math. Soc., 111, 19-28.
-
(1991)
Proc. Amer. Math. Soc.
, vol.111
, pp. 19-28
-
-
Li, C.K.1
Tsing, N.K.2
-
14
-
-
2442455439
-
Constrained extrema of bilinear functional
-
Marcus, M. and Andresen, P. (1977). Constrained extrema of bilinear functional, Monatsh. Math., 84, 219-235.
-
(1977)
Monatsh. Math.
, vol.84
, pp. 219-235
-
-
Marcus, M.1
Andresen, P.2
-
15
-
-
0041937071
-
The C-numerical range of a 2×2 matrix
-
Nakazato, H. (1994). The C-numerical range of a 2×2 matrix, Sci. Rep. Hirosaki Univ., 41, 197-206.
-
(1994)
Sci. Rep. Hirosaki Univ.
, vol.41
, pp. 197-206
-
-
Nakazato, H.1
-
16
-
-
24344478245
-
The boundary of the range of a constrained sesquilinear form
-
Nakazato, H. (1995). The boundary of the range of a constrained sesquilinear form, Linear and Multilinear Algebra, 40, 37-43.
-
(1995)
Linear and Multilinear Algebra
, vol.40
, pp. 37-43
-
-
Nakazato, H.1
-
18
-
-
0041568175
-
On the Boundary of c-Numerical Range of a Matrix
-
Nakazato, H., Nishikawa, Y. and Takaguchi, M. (1955). On the Boundary of c-Numerical Range of a Matrix, Linear and Multilinear Algebra, 39, 231-240.
-
(1955)
Linear and Multilinear Algebra
, vol.39
, pp. 231-240
-
-
Nakazato, H.1
Nishikawa, Y.2
Takaguchi, M.3
-
20
-
-
0037749343
-
The constrained bilinear form and the C-numerical range
-
Tsing, N. K. (1984). The constrained bilinear form and the C-numerical range, Linear Algebra Appl., 56, 195-206.
-
(1984)
Linear Algebra Appl.
, vol.56
, pp. 195-206
-
-
Tsing, N.K.1
-
21
-
-
0742282720
-
Diameter and minimal width of the numerical range
-
Tsing, N. K. (1983). Diameter and minimal width of the numerical range, Linear and Multilinear Algebra, 14, 179-185.
-
(1983)
Linear and Multilinear Algebra
, vol.14
, pp. 179-185
-
-
Tsing, N.K.1
|