메뉴 건너뛰기




Volumn 43, Issue 4, 1998, Pages 385-409

Some results on the q-numerical range

Author keywords

Davis Wielandt shell; Decreasing concave function; Numerical range

Indexed keywords


EID: 21944443196     PISSN: 03081087     EISSN: None     Source Type: Journal    
DOI: 10.1080/03081089808818539     Document Type: Article
Times cited : (31)

References (22)
  • 1
    • 4344589801 scopus 로고    scopus 로고
    • On the diameter of the generalized numerical range
    • Aleksiejczyk, M. (1997). On the diameter of the generalized numerical range, Demonstratio Math., 30, 129-136.
    • (1997) Demonstratio Math. , vol.30 , pp. 129-136
    • Aleksiejczyk, M.1
  • 2
    • 84966234626 scopus 로고
    • An extension of the Hausdorff-Toeplitz theorem on the numerical range
    • Au-Yeung, Y. H. and Tsing, N. K. (1983). An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc., 89, 215-218.
    • (1983) Proc. Amer. Math. Soc. , vol.89 , pp. 215-218
    • Au-Yeung, Y.H.1    Tsing, N.K.2
  • 3
    • 0001185157 scopus 로고
    • Joint ranges of hermitian matrices and simultaneous diagonalization
    • Binding, P. and Li, C. K. (1991). Joint ranges of hermitian matrices and simultaneous diagonalization, Linear Algebra Appl., 151, 157-168.
    • (1991) Linear Algebra Appl. , vol.151 , pp. 157-168
    • Binding, P.1    Li, C.K.2
  • 5
    • 0038547537 scopus 로고
    • The shell of a Hilbert space operator. I and II
    • Davis, C. The shell of a Hilbert space operator. I and II, Acta Sci. Math., 29 (1968), 69-86;
    • (1968) Acta Sci. Math. , vol.29 , pp. 69-86
    • Davis, C.1
  • 7
    • 0004055957 scopus 로고
    • Benjamin, Massachusetts, London
    • Fulton, W. (1969). Algebraic Curves, Benjamin, Massachusetts, London.
    • (1969) Algebraic Curves
    • Fulton, W.1
  • 10
    • 0041937095 scopus 로고    scopus 로고
    • Some convexity theorems for the generalized numerical ranges
    • Li, C. K. (1996). Some convexity theorems for the generalized numerical ranges, Linear and Multilinear Algebra, 40, 235-240.
    • (1996) Linear and Multilinear Algebra , vol.40 , pp. 235-240
    • Li, C.K.1
  • 11
    • 26444578436 scopus 로고    scopus 로고
    • q-numerical range of normal and convex matrices
    • to appear
    • Li, C. K. q-numerical range of normal and convex matrices, Linear and Multilinear Algebra, to appear.
    • Linear and Multilinear Algebra
    • Li, C.K.1
  • 12
    • 0039377795 scopus 로고
    • A generalized numerical range: The range of a constrained sesquilinear form
    • Li, C. K., Mehta, P. P. and Rodman, L. (1994). A generalized numerical range: The range of a constrained sesquilinear form, Linear and Multilinear Algebra, 37, 25-50.
    • (1994) Linear and Multilinear Algebra , vol.37 , pp. 25-50
    • Li, C.K.1    Mehta, P.P.2    Rodman, L.3
  • 13
    • 84968464957 scopus 로고
    • Matrices with circular symmetry on their unitary orbits and C-numerical ranges
    • Li, C. K. and Tsing, N. K. (1991). Matrices with circular symmetry on their unitary orbits and C-numerical ranges, Proc. Amer. Math. Soc., 111, 19-28.
    • (1991) Proc. Amer. Math. Soc. , vol.111 , pp. 19-28
    • Li, C.K.1    Tsing, N.K.2
  • 14
    • 2442455439 scopus 로고
    • Constrained extrema of bilinear functional
    • Marcus, M. and Andresen, P. (1977). Constrained extrema of bilinear functional, Monatsh. Math., 84, 219-235.
    • (1977) Monatsh. Math. , vol.84 , pp. 219-235
    • Marcus, M.1    Andresen, P.2
  • 15
    • 0041937071 scopus 로고
    • The C-numerical range of a 2×2 matrix
    • Nakazato, H. (1994). The C-numerical range of a 2×2 matrix, Sci. Rep. Hirosaki Univ., 41, 197-206.
    • (1994) Sci. Rep. Hirosaki Univ. , vol.41 , pp. 197-206
    • Nakazato, H.1
  • 16
    • 24344478245 scopus 로고
    • The boundary of the range of a constrained sesquilinear form
    • Nakazato, H. (1995). The boundary of the range of a constrained sesquilinear form, Linear and Multilinear Algebra, 40, 37-43.
    • (1995) Linear and Multilinear Algebra , vol.40 , pp. 37-43
    • Nakazato, H.1
  • 20
    • 0037749343 scopus 로고
    • The constrained bilinear form and the C-numerical range
    • Tsing, N. K. (1984). The constrained bilinear form and the C-numerical range, Linear Algebra Appl., 56, 195-206.
    • (1984) Linear Algebra Appl. , vol.56 , pp. 195-206
    • Tsing, N.K.1
  • 21
    • 0742282720 scopus 로고
    • Diameter and minimal width of the numerical range
    • Tsing, N. K. (1983). Diameter and minimal width of the numerical range, Linear and Multilinear Algebra, 14, 179-185.
    • (1983) Linear and Multilinear Algebra , vol.14 , pp. 179-185
    • Tsing, N.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.