-
1
-
-
34250133830
-
On the maximal subgroups of the finite classical groups
-
M. Aschbacher (1984), “On the maximal subgroups of the finite classical groups”, Invent. Math., 76, 469–514.
-
(1984)
Invent. Math
, vol.76
, pp. 469-514
-
-
Aschbacher, M.1
-
2
-
-
84976782048
-
Local expansion of vertex-transitive graphs and random generation in finite groups
-
(Los Angeles) Association for Computing Machinery New York
-
László Babai (1991), “Local expansion of vertex-transitive graphs and random generation in finite groups”, Theory of Computing, (Los Angeles, 1991), pp. 164–174. Association for Computing Machinery, New York.
-
(1991)
Theory of Computing
, pp. 164-174
-
-
Babai, L.1
-
5
-
-
84972885760
-
Non-constructive classical group recognition
-
(in preparation)
-
Frank Celler and C.R. Leedham-Green (in preparation), “Non-constructive classical group recognition”.
-
-
-
Celler, F.1
Leedham-Green, C.R.2
-
6
-
-
0003863325
-
Atlas of finite groups
-
Clarendon Press, Oxford.
-
J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson (1985), Atlas of finite groups. Clarendon Press, Oxford.
-
(1985)
-
-
Conway, J.H.1
Curtis, R.T.2
Norton, S.P.3
Parker, R.A.4
Wilson, R.A.5
-
7
-
-
0001076208
-
Comparison techniques for random walk on finite groups
-
Persi Diaconis and Laurent Saloff-Coste (1993), “Comparison techniques for random walk on finite groups”, Ann. Probab., 21, 2131-2156.
-
(1993)
Ann. Probab
, vol.21
, pp. 2131-2156
-
-
Diaconis, P.1
Saloff-Coste, L.2
-
8
-
-
0002031070
-
Moderate growth and random walk on finite groups
-
P. Diaconis and L. Saloff-Coste (1994), “Moderate growth and random walk on finite groups”, Geom. Funct. Anal., 4, 1–36.
-
(1994)
Geom. Funct. Anal.
, vol.4
, pp. 1-36
-
-
Diaconis, P.1
Saloff-Coste, L.2
-
11
-
-
0000814034
-
An implementation of the Neumann-Praeger algorithm for the recognition of special linear groups
-
Derek F. Holt and Sarah Rees (1992), “An implementation of the Neumann-Praeger algorithm for the recognition of special linear groups”, J. Experimental Math., 1, 237–242.
-
(1992)
J. Experimental Math
, vol.1
, pp. 237-242
-
-
Holt, D.F.1
Sarah, R.2
-
12
-
-
0001941330
-
The probability of generating a finite classical group
-
W.M. Kantor and A. Lubotzky (1990), “The probability of generating a finite classical group”, Geom. Dedicata, 36, 67–87.
-
(1990)
Geom. Dedicata
, vol.36
, pp. 67-87
-
-
Kantor, W.M.1
Lubotzky, A.2
-
13
-
-
0003288316
-
The Subgroup Structure of the Finite Classical Groups
-
Cambridge University Press.
-
Peter Kleidman and Martin Liebeck (1990), The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser., 129. Cambridge University Press.
-
(1990)
London Math. Soc. Lecture Note Ser
, vol.129
-
-
Kleidman, P.1
Martin, L.2
-
14
-
-
84972856105
-
The probability of generating a finite simple group
-
(to appear)
-
Martin W. Liebeck and Aner Shalev (to appear), “The probability of generating a finite simple group”, Geom. Dedicata.
-
Geom. Dedicata
-
-
Liebeck, M.W.1
Shalev, A.2
-
15
-
-
84963046839
-
A recognition algorithm for special linear groups
-
Peter M. Neumann and Cheryl E. Praeger (1992), “A recognition algorithm for special linear groups”, Proc. London Math. Soc. (3), 65, 555–603.
-
(1992)
Proc. London Math. Soc
, vol.65
, Issue.3
, pp. 555-603
-
-
Neumann, P.M.1
Cheryl, E.P.2
-
17
-
-
0003244922
-
Random Number Generation and Quasi-Monte Carlo Methods
-
CBMS-NSF SIAM, Philadelphia
-
Harald Niederreiter (1992), Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63. SIAM, Philadelphia.
-
(1992)
Regional Conference Series in Applied Mathematics
, vol.63
-
-
Niederreiter, H.1
|