메뉴 건너뛰기




Volumn 23, Issue 13, 1995, Pages 4931-4948

Generating Random Elements of a Finite Group

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21844515117     PISSN: 00927872     EISSN: 15324125     Source Type: Journal    
DOI: 10.1080/00927879508825509     Document Type: Article
Times cited : (116)

References (20)
  • 1
    • 34250133830 scopus 로고
    • On the maximal subgroups of the finite classical groups
    • M. Aschbacher (1984), “On the maximal subgroups of the finite classical groups”, Invent. Math., 76, 469–514.
    • (1984) Invent. Math , vol.76 , pp. 469-514
    • Aschbacher, M.1
  • 2
    • 84976782048 scopus 로고
    • Local expansion of vertex-transitive graphs and random generation in finite groups
    • (Los Angeles) Association for Computing Machinery New York
    • László Babai (1991), “Local expansion of vertex-transitive graphs and random generation in finite groups”, Theory of Computing, (Los Angeles, 1991), pp. 164–174. Association for Computing Machinery, New York.
    • (1991) Theory of Computing , pp. 164-174
    • Babai, L.1
  • 5
    • 84972885760 scopus 로고    scopus 로고
    • Non-constructive classical group recognition
    • (in preparation)
    • Frank Celler and C.R. Leedham-Green (in preparation), “Non-constructive classical group recognition”.
    • Celler, F.1    Leedham-Green, C.R.2
  • 7
    • 0001076208 scopus 로고
    • Comparison techniques for random walk on finite groups
    • Persi Diaconis and Laurent Saloff-Coste (1993), “Comparison techniques for random walk on finite groups”, Ann. Probab., 21, 2131-2156.
    • (1993) Ann. Probab , vol.21 , pp. 2131-2156
    • Diaconis, P.1    Saloff-Coste, L.2
  • 8
    • 0002031070 scopus 로고
    • Moderate growth and random walk on finite groups
    • P. Diaconis and L. Saloff-Coste (1994), “Moderate growth and random walk on finite groups”, Geom. Funct. Anal., 4, 1–36.
    • (1994) Geom. Funct. Anal. , vol.4 , pp. 1-36
    • Diaconis, P.1    Saloff-Coste, L.2
  • 11
    • 0000814034 scopus 로고
    • An implementation of the Neumann-Praeger algorithm for the recognition of special linear groups
    • Derek F. Holt and Sarah Rees (1992), “An implementation of the Neumann-Praeger algorithm for the recognition of special linear groups”, J. Experimental Math., 1, 237–242.
    • (1992) J. Experimental Math , vol.1 , pp. 237-242
    • Holt, D.F.1    Sarah, R.2
  • 12
    • 0001941330 scopus 로고
    • The probability of generating a finite classical group
    • W.M. Kantor and A. Lubotzky (1990), “The probability of generating a finite classical group”, Geom. Dedicata, 36, 67–87.
    • (1990) Geom. Dedicata , vol.36 , pp. 67-87
    • Kantor, W.M.1    Lubotzky, A.2
  • 13
    • 0003288316 scopus 로고
    • The Subgroup Structure of the Finite Classical Groups
    • Cambridge University Press.
    • Peter Kleidman and Martin Liebeck (1990), The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser., 129. Cambridge University Press.
    • (1990) London Math. Soc. Lecture Note Ser , vol.129
    • Kleidman, P.1    Martin, L.2
  • 14
    • 84972856105 scopus 로고    scopus 로고
    • The probability of generating a finite simple group
    • (to appear)
    • Martin W. Liebeck and Aner Shalev (to appear), “The probability of generating a finite simple group”, Geom. Dedicata.
    • Geom. Dedicata
    • Liebeck, M.W.1    Shalev, A.2
  • 15
    • 84963046839 scopus 로고
    • A recognition algorithm for special linear groups
    • Peter M. Neumann and Cheryl E. Praeger (1992), “A recognition algorithm for special linear groups”, Proc. London Math. Soc. (3), 65, 555–603.
    • (1992) Proc. London Math. Soc , vol.65 , Issue.3 , pp. 555-603
    • Neumann, P.M.1    Cheryl, E.P.2
  • 17
    • 0003244922 scopus 로고
    • Random Number Generation and Quasi-Monte Carlo Methods
    • CBMS-NSF SIAM, Philadelphia
    • Harald Niederreiter (1992), Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63. SIAM, Philadelphia.
    • (1992) Regional Conference Series in Applied Mathematics , vol.63
    • Niederreiter, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.