메뉴 건너뛰기




Volumn 36, Issue 9, 1995, Pages 4785-4791

Properties of q-entropies

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21844502823     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.530920     Document Type: Article
Times cited : (78)

References (21)
  • 4
    • 84950559638 scopus 로고    scopus 로고
    • The quantum version (our Eq. (2)) of this formula is displayed on p. 247 of Wehrl’s excellent 1978 review who, of course
    • Ref. 1
  • 7
    • 85034916124 scopus 로고
    • Some Comments on Boltzmann-Gibbs Statistical Mechanics,” in “Chaos, Solitons and Fractals
    • The present state of affairs is reviewed in (Pergamon, Oxford)
    • (1994)
    • Tsallis, C.1
  • 9
    • 85034919351 scopus 로고    scopus 로고
    • In infinite dimensions the congergence of [formula omitted] to 1 as [formula omitted] implies that [formula omitted] is divergent For negative q and in finite dimension [formula omitted] is given by (1) if ρ is non-degenerate (i.e., [formula omitted] for all j) otherwise it is [formula omitted] is then strictly convex on the interior of the simplex of probability distributions
  • 12
    • 84950562888 scopus 로고    scopus 로고
    • The equality for disjoint probability measures is observed Eq. (7)
    • Ref. 4
  • 16
    • 85034920654 scopus 로고    scopus 로고
    • Assume [formula omitted] and suppose for simplicity that ρ is a pure state. Then [formula omitted] and ρ is a one-dimensional projection. Let [formula omitted] be a family of pairwise orthogonal one-dimensional projections such that [formula omitted] and put [formula omitted] for [formula omitted] where c is a positive real to be specified shortly. Let [formula omitted] where [formula omitted] If [formula omitted] then φ is a density operator with eigenvalues [formula omitted] and, since [formula omitted] we have [formula omitted] Moreover, [formula omitted] so that [formula omitted] which, for given [formula omitted] is not larger than ε as soon as [formula omitted]
    • The argument of Ref. 2 works
  • 17
    • 84950592791 scopus 로고    scopus 로고
    • This inequality provides us with an alternative proof of Lemma [formula omitted] and similarly for the other bound, because for [formula omitted] the operator norm [formula omitted] does not exceed 1
  • 19
    • 0004192755 scopus 로고
    • Doing Problem 1 on page 182 of Jauch’s book Addison-Wesley, Reading, MAyou will see that if [formula omitted] or [formula omitted] is pure, then [formula omitted]
    • (1968) Foundations of Quantum Mechanics
    • Jauch, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.