-
1
-
-
0002337827
-
Machine learning and data mining
-
Mitchell TM. Machine learning and data mining. Commun ACM 1999;42:31-36.
-
(1999)
Commun ACM
, vol.42
, pp. 31-36
-
-
Mitchell, T.M.1
-
2
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
New York, August 24-27
-
Knorr EM, Ng RT. Algorithms for mining distance-based outliers in large datasets. In: Proc 24th Annual Int Conf on Very Large Data Bases, New York, August 24-27, 1998. pp 392-403.
-
(1998)
Proc 24th Annual Int Conf on Very Large Data Bases
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
3
-
-
0007315638
-
Explaining differences in multidimensional aggregates
-
Edinburgh, Scotland, September 7-10
-
Sarawagi S. Explaining differences in multidimensional aggregates. In: Proc 25th Int Conf on Very Large Data Bases, Edinburgh, Scotland, September 7-10, 1999. pp 42-53.
-
(1999)
Proc 25th Int Conf on Very Large Data Bases
, pp. 42-53
-
-
Sarawagi, S.1
-
4
-
-
0003269280
-
Using general impressions to analyze discovered classification rules
-
Newport Beach, California, August 14-17
-
Liu B, Hsu W, Chen S. Using general impressions to analyze discovered classification rules. In: Proc Third Int Conf on Knowledge Discovery and Data Mining, Newport Beach, California, August 14-17, 1997. pp 31-36.
-
(1997)
Proc Third Int Conf on Knowledge Discovery and Data Mining
, pp. 31-36
-
-
Liu, B.1
Hsu, W.2
Chen, S.3
-
6
-
-
0001267179
-
Pruning and summarizing the discovered associations
-
San Diego, California, August 15-18
-
Liu B, Hsu W, Ma Y. Pruning and summarizing the discovered associations. In: Proc Fifth ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, San Diego, California, August 15-18, 1999. pp 125-134.
-
(1999)
Proc Fifth ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining
, pp. 125-134
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
9
-
-
0030380606
-
What makes patterns interesting in knowledge discovery systems
-
Silberschatz A, Tuzhilin A. What makes patterns interesting in knowledge discovery systems. IEEE Trans Knowl Data Eng 1996;8:970-974.
-
(1996)
IEEE Trans Knowl Data Eng
, vol.8
, pp. 970-974
-
-
Silberschatz, A.1
Tuzhilin, A.2
-
10
-
-
84920878139
-
Exceptional knowledge discovery in databases based on information theory
-
Portland, Oregon, August 2-4
-
Suzuki E, Shimura M. Exceptional knowledge discovery in databases based on information theory. In: Proc Second Int Conf on Knowledge Discovery and Data Mining, Portland, Oregon, August 2-4, 1996. pp 275-278.
-
(1996)
Proc Second Int Conf on Knowledge Discovery and Data Mining
, pp. 275-278
-
-
Suzuki, E.1
Shimura, M.2
-
11
-
-
21844439037
-
Discovering unexpected exceptions: A stochastic approach
-
Tokyo, Japan, November 6-8
-
Suzuki E. Discovering unexpected exceptions: A stochastic approach. In: Proc Fourth Int Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery, Tokyo, Japan, November 6-8, 1996. pp 225-232.
-
(1996)
Proc Fourth Int Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery
, pp. 225-232
-
-
Suzuki, E.1
-
12
-
-
84964943935
-
Autonomous discovery of reliable exception rules
-
Newport Beach, California, August 14-17
-
Suzuki E. Autonomous discovery of reliable exception rules. In: Proc Third Int Conf on Knowledge Discovery and Data Mining, Newport Beach, California, August 14-17,1997. pp 259-262.
-
(1997)
Proc Third Int Conf on Knowledge Discovery and Data Mining
, pp. 259-262
-
-
Suzuki, E.1
-
13
-
-
84947703686
-
Discovery of surprising exception rules based on intensity of implication
-
Zytkow JM, Quafafou M, editors. Principles of data mining and knowledge discovery. Berlin: Springer
-
Suzuki E, Kodratoff Y. Discovery of surprising exception rules based on intensity of implication. In: Zytkow JM, Quafafou M, editors. Principles of data mining and knowledge discovery. Lecture Notes in Artificial Intelligence 1510. Berlin: Springer; 1998. pp 10-18.
-
(1998)
Lecture Notes in Artificial Intelligence
, vol.1510
, pp. 10-18
-
-
Suzuki, E.1
Kodratoff, Y.2
-
14
-
-
84957811911
-
Scheduled discovery of exception rules
-
Arikawa S, Furukawa K, editors. Discovery science. Berlin: Springer
-
Suzuki E. Scheduled discovery of exception rules. In: Arikawa S, Furukawa K, editors. Discovery science. Lecture Notes in Artificial Intelligence 1721. Berlin: Springer; 1999. pp 184-195.
-
(1999)
Lecture Notes in Artificial Intelligence
, vol.1721
, pp. 184-195
-
-
Suzuki, E.1
-
15
-
-
0036978502
-
Undirected discovery of interesting exception rules
-
Suzuki E. Undirected discovery of interesting exception rules. Int J Pattern Recogn Artif Intell 2002;16:1065-1086.
-
(2002)
Int J Pattern Recogn Artif Intell
, vol.16
, pp. 1065-1086
-
-
Suzuki, E.1
-
16
-
-
21844465455
-
Evaluation scheme for exception rule/group discovery
-
Zhong N, Liu J, editors. Berlin: Springer
-
Suzuki E. Evaluation scheme for exception rule/group discovery. In: Zhong N, Liu J, editors. Intelligent technologies for information analysis. Berlin: Springer; 2004. pp 89-108.
-
(2004)
Intelligent Technologies for Information Analysis
, pp. 89-108
-
-
Suzuki, E.1
-
17
-
-
84942804781
-
Fast discovery of interesting rules
-
Terano T, Liu H, Chen ALP, editors. Knowledge discovery and data mining. Berlin: Springer
-
Yugami N, Ohta Y, Okamoto S. Fast discovery of interesting rules. In: Terano T, Liu H, Chen ALP, editors. Knowledge discovery and data mining. Lecture Notes in Artificial Intelligence 1805. Berlin: Springer; 2000. pp 17-28.
-
(2000)
Lecture Notes in Artificial Intelligence
, vol.1805
, pp. 17-28
-
-
Yugami, N.1
Ohta, Y.2
Okamoto, S.3
-
18
-
-
33645800278
-
Evaluating hypothesis-driven exception-rule discovery with medical data sets
-
Terano T, Liu H, Chen ALP, editors. Knowledge discovery and data mining. Berlin: Springer
-
Suzuki E, Tsumoto S. Evaluating hypothesis-driven exception-rule discovery with medical data sets. In: Terano T, Liu H, Chen ALP, editors. Knowledge discovery and data mining. Lecture Notes in Artificial Intelligence 1805. Berlin: Springer; 2000. pp 86-97.
-
(2000)
Lecture Notes in Artificial Intelligence
, vol.1805
, pp. 86-97
-
-
Suzuki, E.1
Tsumoto, S.2
-
19
-
-
0001371923
-
Fast discovery of association rules
-
Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, editors. Menlo Park, CA: AAAI Press
-
Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI. Fast discovery of association rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, editors. Advances in knowledge discovery and data mining. Menlo Park, CA: AAAI Press; 1996. pp 307-328.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
20
-
-
0003408496
-
-
Department of Information and Computer Science, University of California Irvine
-
Blake CL, Merz CJ. UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California Irvine; 1998. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
21
-
-
84974683992
-
Unified algorithm for undirected discovery of exception rules
-
Zighed DA, Komorowski J, Zytkow JM, editors. Principles of data mining and knowledge discovery. Berlin: Springer
-
Suzuki E, Żytkow JM. Unified algorithm for undirected discovery of exception rules. In: Zighed DA, Komorowski J, Zytkow JM, editors. Principles of data mining and knowledge discovery. Lecture Notes in Artificial Intelligence 1910. Berlin: Springer; 2000. pp 169-180.
-
(2000)
Lecture Notes in Artificial Intelligence
, vol.1910
, pp. 169-180
-
-
Suzuki, E.1
Zytkow, J.M.2
-
22
-
-
0026902042
-
An information theoretic approach to rule induction from data-bases
-
Smyth P, Goodman RM. An information theoretic approach to rule induction from data-bases. IEEE Trans Knowl Data Eng 1992;4:301-316.
-
(1992)
IEEE Trans Knowl Data Eng
, vol.4
, pp. 301-316
-
-
Smyth, P.1
Goodman, R.M.2
-
23
-
-
0003382176
-
Comparison of data mining methods using common medical datasets
-
Tokyo, Japan, March 18-19
-
Tsumoto S, Terano T, Inada M, Niimi A, Tazaki E, Negishi N, Suyama A, Yamaguti T, Tachibana Y, Dong J-Z, Zhong N, Ohsuga S, Kamiishi Y, Sugaya S, Suzuki E, Tsukada M, Inoguchi A, Washio T, Motoda H, Fukuda T, Morimoto Y, Matsuzawa H, Okada T, Oyama M, Ho TB, Nguyen TD, Nguyen NB. Comparison of data mining methods using common medical datasets. In: ISM Symp on Data Mining and Knowledge Discovery in Data Science, Tokyo, Japan, March 18-19, 1999. pp 63-72.
-
(1999)
ISM Symp on Data Mining and Knowledge Discovery in Data Science
, pp. 63-72
-
-
Tsumoto, S.1
Terano, T.2
Inada, M.3
Niimi, A.4
Tazaki, E.5
Negishi, N.6
Suyama, A.7
Yamaguti, T.8
Tachibana, Y.9
Dong, J.-Z.10
Zhong, N.11
Ohsuga, S.12
Kamiishi, Y.13
Sugaya, S.14
Suzuki, E.15
Tsukada, M.16
Inoguchi, A.17
Washio, T.18
Motoda, H.19
Fukuda, T.20
Morimoto, Y.21
Matsuzawa, H.22
Okada, T.23
Oyama, M.24
Ho, T.B.25
Nguyen, T.D.26
Nguyen, N.B.27
more..
-
24
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
Tahoe City, California, July 9-12
-
Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features. In: Proc 12th Int Conf on Machine Learning, Tahoe City, California, July 9-12, 1995. pp 194-202.
-
(1995)
Proc 12th Int Conf on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
|