-
1
-
-
0001929964
-
Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III)
-
G.-Q. Chen. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 6 (1986), 75-120.
-
(1986)
Acta Math. Sci.
, vol.6
, pp. 75-120
-
-
Chen, G.-Q.1
-
2
-
-
0000805398
-
Positive invariant regions for systems of nonlinear diffusion equations
-
K. Chueh, C. Conley and J. Smoller. Positive invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1979), 373-92.
-
(1979)
Indiana Univ. Math. J.
, vol.26
, pp. 373-392
-
-
Chueh, K.1
Conley, C.2
Smoller, J.3
-
3
-
-
0002337397
-
Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for isentropic gas dynamics
-
X. Ding, G.-Q. Chen and P. Luo. Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for isentropic gas dynamics. Comm. Math. Phys. 121 (1989), 63-84.
-
(1989)
Comm. Math. Phys.
, vol.121
, pp. 63-84
-
-
Ding, X.1
Chen, G.-Q.2
Luo, P.3
-
4
-
-
0020499710
-
Convergence of approximate solutions to conservation laws
-
R. J. DiPerna. Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 27-70.
-
(1983)
Arch. Rational Mech. Anal.
, vol.82
, pp. 27-70
-
-
DiPerna, R.J.1
-
5
-
-
0002578353
-
Convergence of the viscosity method for isentropic gas dynamics
-
R. J. DiPerna. Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91 (1983), 1-30.
-
(1983)
Comm. Math. Phys.
, vol.91
, pp. 1-30
-
-
DiPerna, R.J.1
-
7
-
-
0002854786
-
Global solutions of the time-dependent drift-diffusion semiconductor equations
-
W. Fang and K. Ito. Global solutions of the time-dependent drift-diffusion semiconductor equations. J. Differential Equations 123 (1995), 523-66.
-
(1995)
J. Differential Equations
, vol.123
, pp. 523-566
-
-
Fang, W.1
Ito, K.2
-
8
-
-
0010885279
-
One-dimensional hydrodynamic model for semiconductors by viscosity method
-
M. Martelli, K. Cooke, E. Cumberbatch, B. Tang and H. Thieme, eds., World Scientific
-
W. Fang and K. Ito. One-dimensional hydrodynamic model for semiconductors by viscosity method. In Differential Equations and Applications to Biology and to Industry, 91-9, M. Martelli, K. Cooke, E. Cumberbatch, B. Tang and H. Thieme, eds., (World Scientific, 1996).
-
(1996)
Differential Equations and Applications to Biology and to Industry
, pp. 91-99
-
-
Fang, W.1
Ito, K.2
-
9
-
-
0031103820
-
Weak solutions to a hydrodynamic model of two carrier types for semiconductors
-
W. Fang and K. Ito. Weak solutions to a hydrodynamic model of two carrier types for semiconductors. Nonlinear Anal. 28 (1997), 947-63.
-
(1997)
Nonlinear Anal.
, vol.28
, pp. 947-963
-
-
Fang, W.1
Ito, K.2
-
11
-
-
84971109210
-
Weak solutions to a hydrodynamic model for semiconductors: Cauchy problem
-
P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors: Cauchy problem. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 115-31.
-
(1995)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.125
, pp. 115-131
-
-
Marcati, P.1
Natalini, R.2
-
14
-
-
0000440966
-
Compensated compactness and applications to partial differential equations
-
London: Pitman
-
L. Tartar. Compensated compactness and applications to partial differential equations. Heriot Watt Symposium, Vol. IV (London: Pitman, 1979).
-
(1979)
Heriot Watt Symposium
, vol.4
-
-
Tartar, L.1
-
16
-
-
21344492574
-
Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices
-
B. Zhang. Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices. Comm. Math. Phys. 157 (1993), 1-22.
-
(1993)
Comm. Math. Phys.
, vol.157
, pp. 1-22
-
-
Zhang, B.1
|