메뉴 건너뛰기




Volumn 32, Issue 6, 2004, Pages 2731-2741

Tusnády's inequality revisited

Author keywords

Beta integral representation of Binomial tails; Equivalent normal deviate; KMT Hungarian construction; Quantile coupling; Ratios of normal tails; Tusn dy's inequality

Indexed keywords


EID: 21644478696     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000000733     Document Type: Article
Times cited : (8)

References (17)
  • 1
    • 0001308354 scopus 로고
    • Hungarian constructions from the nonasymptotic viewpoint
    • BRETAGNOLLE, J. and MASSART, P. (1989). Hungarian constructions from the nonasymptotic viewpoint. Ann. Probab. 17 239-256.
    • (1989) Ann. Probab. , vol.17 , pp. 239-256
    • Bretagnolle, J.1    Massart, P.2
  • 2
    • 21644472518 scopus 로고    scopus 로고
    • Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift
    • BROWN, L. D., CARTER, A. V., LOW, M. G. and ZHANG, C.-H. (2004). Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift. Ann. Statist. 32 2074-2097.
    • (2004) Ann. Statist. , vol.32 , pp. 2074-2097
    • Brown, L.D.1    Carter, A.V.2    Low, M.G.3    Zhang, C.-H.4
  • 7
    • 0000411204 scopus 로고
    • An approximation of partial sums of independent rv's and the sample df. I
    • KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch. Verw. Gebiete 32 111-131.
    • (1975) Z. Wahrsch. Verw. Gebiete , vol.32 , pp. 111-131
    • Komlós, J.1    Major, P.2    Tusnády, G.3
  • 8
    • 84860972565 scopus 로고    scopus 로고
    • The approximation of the normalized empirical ditribution function by a Brownian bridge
    • Mathematical Institute of the Hungarian Academy of Sciences
    • MAJOR, P. (2000). The approximation of the normalized empirical ditribution function by a Brownian bridge. Technical report, Mathematical Institute of the Hungarian Academy of Sciences. Notes available from www.renyi.hu/~major/.
    • (2000) Technical Report
    • Major, P.1
  • 9
    • 21644442357 scopus 로고    scopus 로고
    • Notes on the KMT Brownian bridge approximation to the uniform empirical process
    • (N. Balakrishnan, I. A. Ibragimov and V. B. Nevzorov, eds.) Birkhäuser, Boston
    • MASON, D. M. (2001). Notes on the KMT Brownian bridge approximation to the uniform empirical process. In Asymptotic Methods in Probability and Statistics with Applications (N. Balakrishnan, I. A. Ibragimov and V. B. Nevzorov, eds.) 351-369. Birkhäuser, Boston.
    • (2001) Asymptotic Methods in Probability and Statistics with Applications , pp. 351-369
    • Mason, D.M.1
  • 12
    • 0030328670 scopus 로고    scopus 로고
    • Asymptotic equivalence of density estimation and Gaussian white noise
    • NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430.
    • (1996) Ann. Statist. , vol.24 , pp. 2399-2430
    • Nussbaum, M.1
  • 13
    • 84947375150 scopus 로고
    • A normal approximation for Binomial, F, beta, and other common, related tail probabilities. I
    • PEIZER, D. B. and PRATT, J. W. (1968). A normal approximation for Binomial, F, beta, and other common, related tail probabilities. I. J. Amer. Statist. Assoc. 63 1416-1456.
    • (1968) J. Amer. Statist. Assoc. , vol.63 , pp. 1416-1456
    • Peizer, D.B.1    Pratt, J.W.2
  • 15
    • 84947384281 scopus 로고
    • A normal approximation for Binomial, F, beta, and other common, related tail probabilities. II
    • PRATT, J. W. (1968). A normal approximation for Binomial, F, beta, and other common, related tail probabilities. II. J. Amer. Statist. Assoc. 63 1457-1483.
    • (1968) J. Amer. Statist. Assoc. , vol.63 , pp. 1457-1483
    • Pratt, J.W.1
  • 17


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.