메뉴 건너뛰기




Volumn 32, Issue 6, 2004, Pages 2679-2711

Saddlepoint approximation for student's t-statistic with no moment conditions

Author keywords

Absolute error; Asymptotic normality; Edgeworth expansion; Large deviation; Relative error; Saddlepoint approximation; Self normalized sum; Student's t statistic

Indexed keywords


EID: 21644471134     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000000742     Document Type: Article
Times cited : (28)

References (16)
  • 1
    • 0003278493 scopus 로고
    • Saddlepoint approximation for the Studentized mean, with an application to the bootstrap
    • DANIELS, H. E. and YOUNG, G. A. (1991). Saddlepoint approximation for the Studentized mean, with an application to the bootstrap. Biomelrika 78 169-179.
    • (1991) Biomelrika , vol.78 , pp. 169-179
    • Daniels, H.E.1    Young, G.A.2
  • 3
    • 0002101690 scopus 로고    scopus 로고
    • Self-normalized large deviations in vector spaces
    • (E. Eberlein, M. Hahn and M. Talagrand, eds.). Birkhäuser, Basel
    • DEMBO, A. and SHAO, Q.-M. (1998). Self-normalized large deviations in vector spaces. In High-Dimensional Probability (E. Eberlein, M. Hahn and M. Talagrand, eds.) 27-32. Birkhäuser, Basel.
    • (1998) High-dimensional Probability , pp. 27-32
    • Dembo, A.1    Shao, Q.-M.2
  • 6
    • 0039378037 scopus 로고    scopus 로고
    • When is the Student t-statistic asymptotically standard normal?
    • GINÉ, E., GÖTZE, F. and MASON, D. M. (1997). When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25 1514-1531.
    • (1997) Ann. Probab. , vol.25 , pp. 1514-1531
    • Giné, E.1    Götze, F.2    Mason, D.M.3
  • 7
    • 0000139327 scopus 로고
    • Self-normalized laws of the iterated logarithm
    • GRIFFIN, P. S. and KUELBS, J. (1989). Self-normalized laws of the iterated logarithm. Ann. Probab. 17 1571-1601.
    • (1989) Ann. Probab. , vol.17 , pp. 1571-1601
    • Griffin, P.S.1    Kuelbs, J.2
  • 8
    • 0000867820 scopus 로고
    • Some extensions of the LIL via self-normalizations
    • GRIFFIN, P. S. and KUELBS, J. (1991). Some extensions of the LIL via self-normalizations. Ann. Probab. 19 380-395.
    • (1991) Ann. Probab. , vol.19 , pp. 380-395
    • Griffin, P.S.1    Kuelbs, J.2
  • 9
    • 0000658406 scopus 로고
    • Edgeworth expansion for Student's t statistic under minimal moment conditions
    • HALL, P. (1987). Edgeworth expansion for Student's t statistic under minimal moment conditions. Ann. Probab. 15 920-931.
    • (1987) Ann. Probab. , vol.15 , pp. 920-931
    • Hall, P.1
  • 13
    • 0000660352 scopus 로고
    • Saddlepoint approximation for the distribution of the sum of independent random variables
    • LUGANNANI, R. and RICE, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables. Adv. in Appl. Probab. 12 475-490.
    • (1980) Adv. in Appl. Probab. , vol.12 , pp. 475-490
    • Lugannani, R.1    Rice, S.2
  • 14
    • 84972528712 scopus 로고
    • Saddlepoint methods and statistical inference
    • REID, N. (1988). Saddlepoint methods and statistical inference (with discussion). Statist. Sci. 3 213-238.
    • (1988) Statist. Sci. , vol.3 , pp. 213-238
    • Reid, N.1
  • 15
    • 0031531828 scopus 로고    scopus 로고
    • Self-normalized large deviations
    • SHAO, Q.-M. (1997) Self-normalized large deviations. Ann. Probab. 25 285-328.
    • (1997) Ann. Probab. , vol.25 , pp. 285-328
    • Shao, Q.-M.1
  • 16
    • 0033212383 scopus 로고    scopus 로고
    • An exponential nonuniform Berry-Esseen bound for self-normalized sums
    • WANG, Q. Y. and JING, B.-Y. (1999). An exponential nonuniform Berry-Esseen bound for self-normalized sums. Ann. Probab. 27 2068-2088.
    • (1999) Ann. Probab. , vol.27 , pp. 2068-2088
    • Wang, Q.Y.1    Jing, B.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.