-
1
-
-
0038532237
-
An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix
-
ANDERSON, G. A. (1965). An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix. Ann. Math. Statist. 36 1153-1173.
-
(1965)
Ann. Math. Statist.
, vol.36
, pp. 1153-1173
-
-
Anderson, G.A.1
-
2
-
-
0001699986
-
Asymptotic theory for principal component analysis
-
ANDERSON, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist. 34 122-148.
-
(1963)
Ann. Math. Statist.
, vol.34
, pp. 122-148
-
-
Anderson, T.W.1
-
3
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
BESAG, J. E. (1986). On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B 48 259-302.
-
(1986)
J. Roy. Statist. Soc. Ser. B
, vol.48
, pp. 259-302
-
-
Besag, J.E.1
-
4
-
-
33845221523
-
On conditional and intrinsic autoregressions
-
BESAG, J. E. and KOOPERBERG, C. (1995). On conditional and intrinsic autoregressions. Biometrika 82 733-746.
-
(1995)
Biometrika
, vol.82
, pp. 733-746
-
-
Besag, J.E.1
Kooperberg, C.2
-
5
-
-
21144443869
-
Large sample theory of intrinsic and extrinsic sample means on manifolds
-
BHATTACHARYA, R. and PATRANGENARU, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 1-29.
-
(2003)
I. Ann. Statist.
, vol.31
, pp. 1-29
-
-
Bhattacharya, R.1
Patrangenaru, V.2
-
6
-
-
0012795493
-
High-dimensional limit theorems and matrix decompositions on the Stiefel manifold
-
CHIKUSE, Y. (1991). High-dimensional limit theorems and matrix decompositions on the Stiefel manifold. J. Multivariate Anal. 36 145-162.
-
(1991)
J. Multivariate Anal.
, vol.36
, pp. 145-162
-
-
Chikuse, Y.1
-
8
-
-
0010275414
-
The Wiener sphere and Wiener measure
-
CUTLAND, N. J. and NG, S.-A. (1993). The Wiener sphere and Wiener measure. Ann. Probab. 21 1-13.
-
(1993)
Ann. Probab.
, vol.21
, pp. 1-13
-
-
Cutland, N.J.1
Ng, S.-A.2
-
10
-
-
0030327433
-
Improved pivotal methods for constructing confidence regions with directional data
-
FISHER, N. I., HALL, P., JING, B.-Y. and WOOD, A. T. A. (1996). Improved pivotal methods for constructing confidence regions with directional data. J. Amer. Statist. Assoc. 91 1062-1070.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 1062-1070
-
-
Fisher, N.I.1
Hall, P.2
Jing, B.-Y.3
Wood, A.T.A.4
-
12
-
-
0002200424
-
Statistical methods for tomographic image reconstruction
-
GEMAN, S. and MCCLURE, D. E. (1987). Statistical methods for tomographic image reconstruction. Bull. Inst. Internat. Statist. 52(4) 5-21.
-
(1987)
Bull. Inst. Internat. Statist.
, vol.52
, Issue.4
, pp. 5-21
-
-
Geman, S.1
McClure, D.E.2
-
13
-
-
0345987262
-
-
Carleton Mathematical Lecture Notes No. 13. Carleton Univ., Ottawa
-
HIDA, T. (1975). Analysis of Brownian Functionals. Carleton Mathematical Lecture Notes No. 13. Carleton Univ., Ottawa.
-
(1975)
Analysis of Brownian Functionals
-
-
Hida, T.1
-
14
-
-
0001154834
-
The distribution of the latent roots of the covariance matrix
-
JAMES, A. T. (1960). The distribution of the latent roots of the covariance matrix. Ann. Math. Statist. 31 151-158.
-
(1960)
Ann. Math. Statist.
, vol.31
, pp. 151-158
-
-
James, A.T.1
-
15
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327.
-
(2001)
Ann. Statist.
, vol.29
, pp. 295-327
-
-
Johnstone, I.M.1
-
16
-
-
0002432238
-
Shape manifolds, Procrustean metrics and complex projective spaces
-
KENDALL, D. G. (1984). Shape manifolds, Procrustean metrics and complex projective spaces. Bull. London Math. Soc. 16 81-121.
-
(1984)
Bull. London Math. Soc.
, vol.16
, pp. 81-121
-
-
Kendall, D.G.1
-
17
-
-
0001034467
-
The complex Bingham distribution and shape analysis
-
KENT, J. T. (1994). The complex Bingham distribution and shape analysis. J. Roy. Statist. Soc. Ser. B 56 285-299.
-
(1994)
J. Roy. Statist. Soc. Ser. B
, vol.56
, pp. 285-299
-
-
Kent, J.T.1
-
18
-
-
21644461327
-
Saddlepoint approximations for the Bingham and Fisher-Bingham normalising constants
-
KUME, A. and WOOD, A. T. A. (2005). Saddlepoint approximations for the Bingham and Fisher-Bingham normalising constants. Biometrika 92 465-476.
-
(2005)
Biometrika
, vol.92
, pp. 465-476
-
-
Kume, A.1
Wood, A.T.A.2
-
19
-
-
0001423948
-
Statistics of directional data
-
MARDIA, K. V. (1975). Statistics of directional data (with discussion). J. Roy. Statist. Soc. Ser. B 37 349-393.
-
(1975)
J. Roy. Statist. Soc. Ser. B
, vol.37
, pp. 349-393
-
-
Mardia, K.V.1
-
25
-
-
0000730931
-
Radon-Nikodým derivatives of Gaussian measures
-
SHEPP, L. A. (1966). Radon-Nikodým derivatives of Gaussian measures. Ann. Math. Statist. 37 321-354.
-
(1966)
Ann. Math. Statist.
, vol.37
, pp. 321-354
-
-
Shepp, L.A.1
-
26
-
-
26444461332
-
Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces
-
STAM, A. J. (1982). Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces. J. Appl. Probab. 19 221-228.
-
(1982)
J. Appl. Probab.
, vol.19
, pp. 221-228
-
-
Stam, A.J.1
-
27
-
-
26444502174
-
Limit theorems on high-dimensional spheres and Stiefel manifolds
-
(S. Karlin, T. Amemiya and L. A. Goodman, eds.). Academic Press, New York
-
WATSON, G. S. (1983). Limit theorems on high-dimensional spheres and Stiefel manifolds. In Studies in Econometrics, Time Series, and Multivariate Statistics (S. Karlin, T. Amemiya and L. A. Goodman, eds.) 559-570. Academic Press, New York.
-
(1983)
Studies in Econometrics, Time Series, and Multivariate Statistics
, pp. 559-570
-
-
Watson, G.S.1
-
29
-
-
0009963010
-
The Langevin distribution on high dimensional spheres
-
WATSON, G. S. (1988). The Langevin distribution on high dimensional spheres. J. Appl. Statist. 15 123-130.
-
(1988)
J. Appl. Statist.
, vol.15
, pp. 123-130
-
-
Watson, G.S.1
-
30
-
-
85040136095
-
Differential space
-
WIENER, N. (1923). Differential space. J. Math. Phys. 2 131-174.
-
(1923)
J. Math. Phys.
, vol.2
, pp. 131-174
-
-
Wiener, N.1
|