메뉴 건너뛰기




Volumn 33, Issue 4, 2005, Pages 1643-1665

Statistical analysis on high-dimensional spheres and shape spaces

Author keywords

Bingham distribution; Complex Bingham; Complex Watson; Directional data; Functional data analysis; Infinite dimensional sphere; Shape; Sphere; Von Mises Fisher distribution; Watson distribution; Wiener measure; Wiener process

Indexed keywords


EID: 21644440760     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053605000000264     Document Type: Article
Times cited : (62)

References (30)
  • 1
    • 0038532237 scopus 로고
    • An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix
    • ANDERSON, G. A. (1965). An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix. Ann. Math. Statist. 36 1153-1173.
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1153-1173
    • Anderson, G.A.1
  • 2
    • 0001699986 scopus 로고
    • Asymptotic theory for principal component analysis
    • ANDERSON, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist. 34 122-148.
    • (1963) Ann. Math. Statist. , vol.34 , pp. 122-148
    • Anderson, T.W.1
  • 3
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • BESAG, J. E. (1986). On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B 48 259-302.
    • (1986) J. Roy. Statist. Soc. Ser. B , vol.48 , pp. 259-302
    • Besag, J.E.1
  • 4
    • 33845221523 scopus 로고
    • On conditional and intrinsic autoregressions
    • BESAG, J. E. and KOOPERBERG, C. (1995). On conditional and intrinsic autoregressions. Biometrika 82 733-746.
    • (1995) Biometrika , vol.82 , pp. 733-746
    • Besag, J.E.1    Kooperberg, C.2
  • 5
    • 21144443869 scopus 로고    scopus 로고
    • Large sample theory of intrinsic and extrinsic sample means on manifolds
    • BHATTACHARYA, R. and PATRANGENARU, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 1-29.
    • (2003) I. Ann. Statist. , vol.31 , pp. 1-29
    • Bhattacharya, R.1    Patrangenaru, V.2
  • 6
    • 0012795493 scopus 로고
    • High-dimensional limit theorems and matrix decompositions on the Stiefel manifold
    • CHIKUSE, Y. (1991). High-dimensional limit theorems and matrix decompositions on the Stiefel manifold. J. Multivariate Anal. 36 145-162.
    • (1991) J. Multivariate Anal. , vol.36 , pp. 145-162
    • Chikuse, Y.1
  • 8
    • 0010275414 scopus 로고
    • The Wiener sphere and Wiener measure
    • CUTLAND, N. J. and NG, S.-A. (1993). The Wiener sphere and Wiener measure. Ann. Probab. 21 1-13.
    • (1993) Ann. Probab. , vol.21 , pp. 1-13
    • Cutland, N.J.1    Ng, S.-A.2
  • 10
    • 0030327433 scopus 로고    scopus 로고
    • Improved pivotal methods for constructing confidence regions with directional data
    • FISHER, N. I., HALL, P., JING, B.-Y. and WOOD, A. T. A. (1996). Improved pivotal methods for constructing confidence regions with directional data. J. Amer. Statist. Assoc. 91 1062-1070.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1062-1070
    • Fisher, N.I.1    Hall, P.2    Jing, B.-Y.3    Wood, A.T.A.4
  • 12
    • 0002200424 scopus 로고
    • Statistical methods for tomographic image reconstruction
    • GEMAN, S. and MCCLURE, D. E. (1987). Statistical methods for tomographic image reconstruction. Bull. Inst. Internat. Statist. 52(4) 5-21.
    • (1987) Bull. Inst. Internat. Statist. , vol.52 , Issue.4 , pp. 5-21
    • Geman, S.1    McClure, D.E.2
  • 13
    • 0345987262 scopus 로고
    • Carleton Mathematical Lecture Notes No. 13. Carleton Univ., Ottawa
    • HIDA, T. (1975). Analysis of Brownian Functionals. Carleton Mathematical Lecture Notes No. 13. Carleton Univ., Ottawa.
    • (1975) Analysis of Brownian Functionals
    • Hida, T.1
  • 14
    • 0001154834 scopus 로고
    • The distribution of the latent roots of the covariance matrix
    • JAMES, A. T. (1960). The distribution of the latent roots of the covariance matrix. Ann. Math. Statist. 31 151-158.
    • (1960) Ann. Math. Statist. , vol.31 , pp. 151-158
    • James, A.T.1
  • 15
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327.
    • (2001) Ann. Statist. , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 16
    • 0002432238 scopus 로고
    • Shape manifolds, Procrustean metrics and complex projective spaces
    • KENDALL, D. G. (1984). Shape manifolds, Procrustean metrics and complex projective spaces. Bull. London Math. Soc. 16 81-121.
    • (1984) Bull. London Math. Soc. , vol.16 , pp. 81-121
    • Kendall, D.G.1
  • 17
    • 0001034467 scopus 로고
    • The complex Bingham distribution and shape analysis
    • KENT, J. T. (1994). The complex Bingham distribution and shape analysis. J. Roy. Statist. Soc. Ser. B 56 285-299.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 285-299
    • Kent, J.T.1
  • 18
    • 21644461327 scopus 로고    scopus 로고
    • Saddlepoint approximations for the Bingham and Fisher-Bingham normalising constants
    • KUME, A. and WOOD, A. T. A. (2005). Saddlepoint approximations for the Bingham and Fisher-Bingham normalising constants. Biometrika 92 465-476.
    • (2005) Biometrika , vol.92 , pp. 465-476
    • Kume, A.1    Wood, A.T.A.2
  • 19
    • 0001423948 scopus 로고
    • Statistics of directional data
    • MARDIA, K. V. (1975). Statistics of directional data (with discussion). J. Roy. Statist. Soc. Ser. B 37 349-393.
    • (1975) J. Roy. Statist. Soc. Ser. B , vol.37 , pp. 349-393
    • Mardia, K.V.1
  • 25
    • 0000730931 scopus 로고
    • Radon-Nikodým derivatives of Gaussian measures
    • SHEPP, L. A. (1966). Radon-Nikodým derivatives of Gaussian measures. Ann. Math. Statist. 37 321-354.
    • (1966) Ann. Math. Statist. , vol.37 , pp. 321-354
    • Shepp, L.A.1
  • 26
    • 26444461332 scopus 로고
    • Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces
    • STAM, A. J. (1982). Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces. J. Appl. Probab. 19 221-228.
    • (1982) J. Appl. Probab. , vol.19 , pp. 221-228
    • Stam, A.J.1
  • 27
    • 26444502174 scopus 로고
    • Limit theorems on high-dimensional spheres and Stiefel manifolds
    • (S. Karlin, T. Amemiya and L. A. Goodman, eds.). Academic Press, New York
    • WATSON, G. S. (1983). Limit theorems on high-dimensional spheres and Stiefel manifolds. In Studies in Econometrics, Time Series, and Multivariate Statistics (S. Karlin, T. Amemiya and L. A. Goodman, eds.) 559-570. Academic Press, New York.
    • (1983) Studies in Econometrics, Time Series, and Multivariate Statistics , pp. 559-570
    • Watson, G.S.1
  • 29
    • 0009963010 scopus 로고
    • The Langevin distribution on high dimensional spheres
    • WATSON, G. S. (1988). The Langevin distribution on high dimensional spheres. J. Appl. Statist. 15 123-130.
    • (1988) J. Appl. Statist. , vol.15 , pp. 123-130
    • Watson, G.S.1
  • 30
    • 85040136095 scopus 로고
    • Differential space
    • WIENER, N. (1923). Differential space. J. Math. Phys. 2 131-174.
    • (1923) J. Math. Phys. , vol.2 , pp. 131-174
    • Wiener, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.