메뉴 건너뛰기




Volumn 348, Issue 9, 1996, Pages 3745-3761

Maximal subgroups in finite and profinite groups

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21444458682     PISSN: 00029947     EISSN: None     Source Type: Journal    
DOI: 10.1090/s0002-9947-96-01665-0     Document Type: Article
Times cited : (44)

References (20)
  • 1
    • 34250133830 scopus 로고
    • On the maximal subgroups of the finite classical groups
    • MR 86a:20054
    • M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469-514. MR 86a:20054
    • (1984) Invent. Math. , vol.76 , pp. 469-514
    • Aschbacher, M.1
  • 2
    • 0011535930 scopus 로고
    • Solvable generation of groups and Sylow subgroups of the lower central series
    • MR 84c:20025
    • M. Aschbacher and R. Guralnick, Solvable generation of groups and Sylow subgroups of the lower central series, J. Algebra 77 (1982), 189-201. MR 84c:20025
    • (1982) J. Algebra , vol.77 , pp. 189-201
    • Aschbacher, M.1    Guralnick, R.2
  • 3
    • 0001667058 scopus 로고
    • On the orders of primitive permutation groups with restricted nonabelian composition factors
    • MR 84e:20003
    • L. Babai, P. J. Cameron, P. P. Pálfy, On the orders of primitive permutation groups with restricted nonabelian composition factors, J. Algebra 79 (1982), 161-168. MR 84e:20003
    • (1982) J. Algebra , vol.79 , pp. 161-168
    • Babai, L.1    Cameron, P.J.2    Pálfy, P.P.3
  • 4
    • 51249165247 scopus 로고
    • The probability of generating certain profinite groups by two elements
    • MR 95c:20039
    • M. Bhattacharjee, The probability of generating certain profinite groups by two elements, Israel J. Math. 86 (1994), 311-329. MR 95c:20039
    • (1994) Israel J. Math. , vol.86 , pp. 311-329
    • Bhattacharjee, M.1
  • 7
    • 0001941330 scopus 로고
    • The probability of generating a finite classical group
    • MR 91j:20041
    • W. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Ded. 36 (1990), 67-87. MR 91j:20041
    • (1990) Geom. Ded. , vol.36 , pp. 67-87
    • Kantor, W.1    Lubotzky, A.2
  • 8
    • 0003288316 scopus 로고
    • The Subgroup Structure of the Finite Classical Groups
    • Cambridge University Press, Cambridge, MR 91g:20001
    • P. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser. 129, Cambridge University Press, Cambridge, 1990. MR 91g:20001
    • (1990) London Math. Soc. Lecture Note Ser. , vol.129
    • Kleidman, P.1    Liebeck, M.W.2
  • 9
    • 0001704592 scopus 로고
    • On the minimal degrees of projectile representations of the finite Chevalley groups
    • MR 50:13299
    • V. Landazuri and G. M. Seitz, On the minimal degrees of projectile representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443. MR 50:13299
    • (1974) J. Algebra , vol.32 , pp. 418-443
    • Landazuri, V.1    Seitz, G.M.2
  • 10
    • 0001507307 scopus 로고
    • On the O'Nan-Scott theorem for finite primitive permutation groups
    • MR 89a:20002
    • M. W. Liebeck, C. Praeger and J. Saxl, On the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. (A) 44 (1988), 389-396. MR 89a:20002
    • (1988) J. Austral. Math. Soc. (A) , vol.44 , pp. 389-396
    • Liebeck, M.W.1    Praeger, C.2    Saxl, J.3
  • 11
    • 0001056702 scopus 로고
    • The probability of generating a finite simple group
    • CMP 95:14
    • M. W. Liebeck and A. Shalev, The probability of generating a finite simple group, Geom. Ded. 56 (1995), 103-113. CMP 95:14
    • (1995) Geom. Ded. , vol.56 , pp. 103-113
    • Liebeck, M.W.1    Shalev, A.2
  • 12
    • 0000762915 scopus 로고
    • Subgroup growth and congruence subgroups
    • MR 95m:20054
    • A. Lubotzky, Subgroup growth and congruence subgroups, Invent. Math. 119 (1995), 267-295. MR 95m:20054
    • (1995) Invent. Math. , vol.119 , pp. 267-295
    • Lubotzky, A.1
  • 13
    • 51249161525 scopus 로고
    • Finitely generated groups of polynomial subgroup growth
    • the Thompson Volume, MR 95b:20051
    • A. Lubotzky, A. Mann and D. Segal, Finitely generated groups of polynomial subgroup growth, Israel J. Math. 82 (1993) (the Thompson Volume), 363-371. MR 95b:20051
    • (1993) Israel J. Math. , vol.82 , pp. 363-371
    • Lubotzky, A.1    Mann, A.2    Segal, D.3
  • 14
    • 85086613717 scopus 로고    scopus 로고
    • Positively finitely generated groups
    • to appear
    • A. Mann, Positively finitely generated groups, Forum Math., to appear.
    • Forum Math.
    • Mann, A.1
  • 16
    • 0012670499 scopus 로고    scopus 로고
    • Simple groups, maximal subgroups, and probabilistic aspects of profinite groups
    • to appear
    • A. Mann and A. Shalev, Simple groups, maximal subgroups, and probabilistic aspects of profinite groups, Israel J. Math., to appear.
    • Israel J. Math.
    • Mann, A.1    Shalev, A.2
  • 17
    • 0007122889 scopus 로고
    • Enumerating finite groups of given order
    • MR 93m:11097
    • L. Pyber, Enumerating finite groups of given order, Ann. of Math. 137 (1993), 203-220. MR 93m:11097
    • (1993) Ann. of Math. , vol.137 , pp. 203-220
    • Pyber, L.1
  • 18
    • 84972179194 scopus 로고    scopus 로고
    • Groups with super-exponential subgroup growth
    • to appear
    • L. Pyber and A. Shalev, Groups with super-exponential subgroup growth, Combinatorica, to appear.
    • Combinatorica
    • Pyber, L.1    Shalev, A.2
  • 19
    • 84962991729 scopus 로고
    • Growth functions, p-adic analytic groups, and groups of finite coclass
    • MR 94a:20047
    • A. Shalev, Growth functions, p-adic analytic groups, and groups of finite coclass, J. London Math. Soc. (2) 46 (1992), 111-122. MR 94a:20047
    • (1992) J. London Math. Soc. (2) , vol.46 , pp. 111-122
    • Shalev, A.1
  • 20
    • 0003234284 scopus 로고
    • Matrix Groups
    • Providence, MR 52:10852
    • D. A. Suprunenko, Matrix Groups, Amer. Math. Soc., Providence, 1976, 252 pp. MR 52:10852
    • (1976) Amer. Math. Soc.
    • Suprunenko, D.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.