메뉴 건너뛰기




Volumn 124, Issue 10, 1996, Pages 3151-3158

On C*-algebras associated with locally compact groups

Author keywords

Amenable group; Connected Lie group; Fourier algebra; Group C* algebra; Weak containment

Indexed keywords


EID: 21444439761     PISSN: 00029939     EISSN: None     Source Type: Journal    
DOI: 10.1090/s0002-9939-96-03382-5     Document Type: Article
Times cited : (18)

References (14)
  • 1
    • 0000605898 scopus 로고
    • Computing norms in group C*-algebras
    • [AkO] MR 56:1079
    • [AkO] C. Akemann and P. Ostrand, Computing norms in group C*-algebras, Amer. J. Math. 98 (1976), 1015-1048. MR 56:1079
    • (1976) Amer. J. Math. , vol.98 , pp. 1015-1048
    • Akemann, C.1    Ostrand, P.2
  • 2
    • 84966220221 scopus 로고
    • On the C*-algebra generated by the left regular representation of a locally compact group
    • [Béd] MR 94d:22004
    • [Béd] E. Bédos, On the C*-algebra generated by the left regular representation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603-608. MR 94d:22004
    • (1994) Proc. Amer. Math. Soc. , vol.120 , pp. 603-608
    • Bédos, E.1
  • 3
    • 51249164188 scopus 로고
    • Some groups whose reduced C*-algebra is simple
    • [BCH]
    • [BCH] M.B. Bekka, M. Cowling and P. de la Harpe, Some groups whose reduced C*-algebra is simple, Publ. Math. IHES 80 (1994), 117-134.
    • (1994) Publ. Math. IHES , vol.80 , pp. 117-134
    • Bekka, M.B.1    Cowling, M.2    De La Harpe, P.3
  • 4
    • 0000334777 scopus 로고
    • Amenable unitary representations of locally compact groups
    • [Bek] MR 91g:22007
    • [Bek] M.B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), 383-401. MR 91g:22007
    • (1990) Invent. Math. , vol.100 , pp. 383-401
    • Bekka, M.B.1
  • 5
    • 0013481231 scopus 로고
    • On duals of Lie groups made discrete
    • [BeV] MR 94k:22003
    • [BeV] M.B. Bekka and A. Valette, On duals of Lie groups made discrete, J. reine angew. Math. 439 (1993), 1-10. MR 94k:22003
    • (1993) J. Reine Angew. Math. , vol.439 , pp. 1-10
    • Bekka, M.B.1    Valette, A.2
  • 6
    • 0003421383 scopus 로고
    • [Dix] North-Holland, MR 56:16388
    • [Dix] J. Dixmier, C*-algebras, North-Holland, 1977. MR 56:16388
    • (1977) C*-algebras
    • Dixmier, J.1
  • 7
    • 84961471104 scopus 로고
    • C*-algebras generated by Fourier-Stieltjes transforms
    • [DuR] MR 46:9646
    • [DuR] C. Dunkl and D. Ramirez, C*-algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435-441. MR 46:9646
    • (1972) Trans. Amer. Math. Soc. , vol.164 , pp. 435-441
    • Dunkl, C.1    Ramirez, D.2
  • 8
    • 0000724626 scopus 로고
    • L'algèbre de Fourier d'un groupe localement compact
    • [Eym] MR 37:4208
    • [Eym] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37:4208
    • (1964) Bull. Soc. Math. France , vol.92 , pp. 181-236
    • Eymard, P.1
  • 10
    • 33847574798 scopus 로고
    • Symmetric random walks on groups
    • [Kes] MR 22:253
    • [Kes] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. MR 22:253
    • (1959) Trans. Amer. Math. Soc. , vol.92 , pp. 336-354
    • Kesten, H.1
  • 11
    • 0000411592 scopus 로고
    • Faltungsoperatoren auf gewissen diskreten Gruppen
    • [Lei] MR 50:7594
    • [Lei] M. Leinert, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math. 52 (1974), 149-158. MR 50:7594
    • (1974) Studia Math. , vol.52 , pp. 149-158
    • Leinert, M.1
  • 12
    • 0008513252 scopus 로고
    • Topological transformation groups
    • [MoZ] MR 17:383
    • [MoZ] D. Montgomery and L. Zippin, Topological transformation groups, Interscience (1955). MR 17:383
    • (1955) Interscience
    • Montgomery, D.1    Zippin, L.2
  • 13
    • 0003290741 scopus 로고
    • Amenability
    • [Pat] MR 90e:43001
    • [Pat] A. Paterson, Amenability, Amer. Math. Soc. (1988). MR 90e:43001
    • (1988) Amer. Math. Soc.
    • Paterson, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.