메뉴 건너뛰기




Volumn 124, Issue 11, 1996, Pages 3381-3390

Irreducible positive linear maps on operator algebras

Author keywords

Completely positive maps; Irreducibilty; Positive linear maps

Indexed keywords


EID: 21444438271     PISSN: 00029939     EISSN: None     Source Type: Journal    
DOI: 10.1090/s0002-9939-96-03441-7     Document Type: Article
Times cited : (47)

References (14)
  • 1
    • 84963062939 scopus 로고
    • Facial structure in operator algebra theory
    • MR 93c:46106
    • C.A. Akemann and G.K. Pedersen, Facial structure in operator algebra theory, Proc. London Math. Soc. 64 (1992), 418-448. MR 93c:46106
    • (1992) Proc. London Math. Soc. , vol.64 , pp. 418-448
    • Akemann, C.A.1    Pedersen, G.K.2
  • 2
    • 0011052955 scopus 로고
    • Frobenius theory for positive maps on von Neumann algebras
    • MR 81m:46091
    • S. Albeverio and R. Hoegh-Krohn, Frobenius theory for positive maps on von Neumann algebras, Comm. Math. Phys. 64 (1978/79), 83-94. MR 81m:46091
    • (1978) Comm. Math. Phys. , vol.64 , pp. 83-94
    • Albeverio, S.1    Hoegh-Krohn, R.2
  • 3
    • 34250491179 scopus 로고
    • Subalgebras of C*-algebras
    • MR 40:6274
    • W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224. MR 40:6274
    • (1969) Acta Math. , vol.123 , pp. 141-224
    • Arveson, W.B.1
  • 4
    • 0016522050 scopus 로고
    • Completely positive linear maps on complex matrices
    • MR 51:12901
    • M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285-290. MR 51:12901
    • (1975) Linear Algebra Appl. , vol.10 , pp. 285-290
    • Choi, M.-D.1
  • 5
    • 0001689553 scopus 로고
    • Extremal positive semidefinite forms
    • MR 58:16512
    • M.-D. Choi and T.-Y. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977), 1-18. MR 58:16512
    • (1977) Math. Ann. , vol.231 , pp. 1-18
    • Choi, M.-D.1    Lam, T.-Y.2
  • 6
    • 0041012479 scopus 로고
    • Spectral properties of positive maps on C*-algebras
    • MR 58:2319
    • D. Evans and R. Høegh-Krohn, Spectral properties of positive maps on C*-algebras, J. London Math. Soc. 17 (1978), 345-355. MR 58:2319
    • (1978) J. London Math. Soc. , vol.17 , pp. 345-355
    • Evans, D.1    Høegh-Krohn, R.2
  • 8
    • 1642550310 scopus 로고
    • The peripheral point spectrum of Schwarz operators on C*-algebras
    • MR 82i:46088
    • U. Groh, The peripheral point spectrum of Schwarz operators on C*-algebras, Math. Z. 176 (1981), 311-318. MR 82i:46088
    • (1981) Math. Z. , vol.176 , pp. 311-318
    • Groh, U.1
  • 9
    • 0039643450 scopus 로고
    • Some observations on the spectra of positive operators on finite-dimensional C*algebras
    • MR 84f:46079
    • U. Groh, Some observations on the spectra of positive operators on finite-dimensional C*algebras, Linear Algebra Appl. 42 (1982), 213-222. MR 84f:46079
    • (1982) Linear Algebra Appl. , vol.42 , pp. 213-222
    • Groh, U.1
  • 10
    • 0030477062 scopus 로고    scopus 로고
    • Facial structures for positive linear maps between matrix algebras
    • S.-H. Kye, Facial structures for positive linear maps between matrix algebras, Canad. Math. Bull. 39 (1996), 74-82.
    • (1996) Canad. Math. Bull. , vol.39 , pp. 74-82
    • Kye, S.-H.1
  • 11
    • 0000016299 scopus 로고
    • Elementary operators on prime C*-algebras, I
    • M. Mathieu, Elementary operators on prime C*-algebras, I., Math. Ann. 284 (1989), 223-244.
    • (1989) Math. Ann. , vol.284 , pp. 223-244
    • Mathieu, M.1
  • 13
    • 0642296091 scopus 로고
    • Positive operators and an inertia theorem
    • MR 30:3888
    • H. Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965), 11-17. MR 30:3888
    • (1965) Numer. Math. , vol.7 , pp. 11-17
    • Schneider, H.1
  • 14
    • 33645955477 scopus 로고
    • Cones of positive maps
    • MR 87m:46111
    • E. Stormer, Cones of positive maps, Contemporary Math. 62 (1987), 345-356. MR 87m:46111
    • (1987) Contemporary Math. , vol.62 , pp. 345-356
    • Stormer, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.