메뉴 건너뛰기




Volumn 10, Issue 1-2, 2004, Pages 315-336

To the uniqueness problem for nonlinear parabolic equations

Author keywords

Bounded solutions; Degenerate typ; Non standard assumptions; Nonlinear parabolic equations; Uniqueness

Indexed keywords


EID: 2142825622     PISSN: 10780947     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcds.2004.10.315     Document Type: Article
Times cited : (14)

References (16)
  • 1
    • 0000836987 scopus 로고
    • Quasilinear Elliptic Parabolic Differential Equations
    • H.W. Alt, S. Luckhaus, Quasilinear Elliptic Parabolic Differential Equations, Math. Z., 183 (1983), 311-341.
    • (1983) Math. Z. , vol.183 , pp. 311-341
    • Alt, H.W.1    Luckhaus, S.2
  • 2
    • 0003131889 scopus 로고
    • Local behavior of solutions of quasilinear parabolic equations
    • D.G. Aronson, I. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122.
    • (1967) Arch. Rational Mech. Anal. , vol.25 , pp. 81-122
    • Aronson, D.G.1    Serrin, I.2
  • 3
    • 0000013866 scopus 로고    scopus 로고
    • On mild and weak solutions of elliptic-parabolic problems
    • Ph. Benilan, P. Wittbold, On mild and weak solutions of elliptic-parabolic problems, Advance in Diff. Equ., vol. 1 (1996), 1053-1076.
    • (1996) Advance in Diff. Equ. , vol.1 , pp. 1053-1076
    • Benilan, Ph.1    Wittbold, P.2
  • 4
    • 38149144413 scopus 로고
    • On a variant of monotonicity and its application to differential equations
    • TMA
    • H. Gajewski, On a variant of monotonicity and its application to differential equations, Nonlinear Anal., TMA, vol. 22 (1994), 73-80.
    • (1994) Nonlinear Anal. , vol.22 , pp. 73-80
    • Gajewski, H.1
  • 5
    • 0001373907 scopus 로고
    • Reaction-diffusion processes of electrically charged species
    • H. Gajewski, K. Gröger, Reaction-diffusion processes of electrically charged species, Math. Nachr., 177 (1966), 109-130.
    • (1966) Math. Nachr. , vol.177 , pp. 109-130
    • Gajewski, H.1    Gröger, K.2
  • 8
    • 0032445844 scopus 로고    scopus 로고
    • Global behavior of a reaction diffusion system modelling chemotaxis
    • H. Gajewski, K. Zacharias, Global behavior of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
    • (1998) Math. Nachr. , vol.195 , pp. 77-114
    • Gajewski, H.1    Zacharias, K.2
  • 10
    • 0032291814 scopus 로고    scopus 로고
    • Phase segregation dynamics in particle systems with long range interactions II. Interface motion
    • G. Giacomin, G., J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions II. Interface motion, SIAM J. Appl. Math. 58 (1998), 1707-1729.
    • (1998) SIAM J. Appl. Math. , vol.58 , pp. 1707-1729
    • Giacomin, G.1    Lebowitz, J.L.2
  • 11
    • 0001156676 scopus 로고
    • Linear and quasilinear equations of parabolic type
    • Nauka, Moscow (Russian), A.M.S., Providence
    • O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow (1967) (Russian), Transl. Math. Monographs, A.M.S., Providence, vol. 23 (1974).
    • (1967) Transl. Math. Monographs , vol.23
    • Ladyzhenskaja, O.A.1    Solonnikov, V.A.2    Uraltseva, N.N.3
  • 13
    • 84980088516 scopus 로고
    • A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations
    • I. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468.
    • (1960) Comm. Pure Appl. Math. , vol.13 , pp. 457-468
    • Moser, I.1
  • 14
    • 0002929168 scopus 로고
    • 1-contraction and uniqueness for quasilinear elliptic-parabolic equations
    • Serie 1
    • 1-contraction and uniqueness for quasilinear elliptic-parabolic equations, C.R. Acad. Sci. Paris, 318, Serie 1 (1995), 1005-1010.
    • (1995) C.R. Acad. Sci. Paris , vol.318 , pp. 1005-1010
    • Otto, F.1
  • 15
    • 0347420558 scopus 로고    scopus 로고
    • The geometry of diasipative evolution equations: The porous medium equation
    • Preprint M. Planck Inst. Math. Leipzig, to appear
    • F. Otto, The geometry of diasipative evolution equations: the porous medium equation, Preprint 8 (1999) M. Planck Inst. Math. Leipzig, (to appear in Comm. in Part. Diff. Equat.)
    • (1999) Comm. in Part. Diff. Equat. , vol.8
    • Otto, F.1
  • 16
    • 0003609593 scopus 로고
    • Methods of analysis of nonlinear elliptic boundary value problems
    • A.M.S., Providence
    • I.V. Skrypnik, Methods of analysis of nonlinear elliptic boundary value problems, Transl. Math. Monographs, A.M.S., Providence, vol. 139 (1994).
    • (1994) Transl. Math. Monographs , vol.139
    • Skrypnik, I.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.