메뉴 건너뛰기




Volumn 14, Issue 4, 2002, Pages 777-827

Exponential dichotomy and time-bounded solutions for first-order hyperbolic systems

Author keywords

Bounded and almost periodic solutions; Exponential dichotomy; First order hyperbolic systems

Indexed keywords


EID: 2142781563     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1023/A:1020760510158     Document Type: Article
Times cited : (2)

References (28)
  • 2
    • 0013355519 scopus 로고
    • On stability of symmetric hyperbolic systems I, II
    • Eckhoff, K. S. (1981). On stability of symmetric hyperbolic systems I, II. J. Differential Equations 40, 94-115; 43 (1983), 281-304.
    • (1981) J. Differential Equations , vol.40 , pp. 281-304
    • Eckhoff, K.S.1
  • 3
    • 0002227738 scopus 로고
    • Linear partial differential equations. Foundations of the classical theory
    • Partial differential equations I, Springer-Verlag, Berlin
    • Egorov, Yu. V., and Shubin, M. A. (1992). Linear partial differential equations. Foundations of the classical theory. In Encyclopaedia of Math. Sci., Vol. 30 (Partial differential equations I), Springer-Verlag, Berlin.
    • (1992) Encyclopaedia of Math. Sci. , vol.30
    • Egorov Yu, V.1    Shubin, M.A.2
  • 8
    • 0003668851 scopus 로고
    • The Analysis of Linear Partial Differential Operators III
    • Springer-Verlag, Berlin-Heidelberg-New York-Tokyo
    • Hörmander, L. (1985). The Analysis of Linear Partial Differential Operators III. PseudoDifferential Operators, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.
    • (1985) PseudoDifferential Operators
    • Hörmander, L.1
  • 12
    • 0002264272 scopus 로고    scopus 로고
    • Stability of quasi-linear hyperbolic dissipative systems
    • Kreiss, H.-O., Ortiz, O. E., and Reula, O. A. (1998). Stability of quasi-linear hyperbolic dissipative systems, J. Differential Equations 142, 78-96.
    • (1998) J. Differential Equations , vol.142 , pp. 78-96
    • Kreiss, H.-O.1    Ortiz, O.E.2    Reula, O.A.3
  • 15
    • 0002835644 scopus 로고
    • Some theorems on the inertia of general matrices
    • Ostrowski, A., and Schneider, H. (1962). Some theorems on the inertia of general matrices. J. Math. Anal. Appl. 4, 72-84.
    • (1962) J. Math. Anal. Appl. , vol.4 , pp. 72-84
    • Ostrowski, A.1    Schneider, H.2
  • 18
    • 52649149417 scopus 로고
    • Stability of symmetric hyperbolic systems with nonlinear feedback
    • Peyser, G. (1975). Stability of symmetric hyperbolic systems with nonlinear feedback. SIAMJ. Math. Anal. 6, 925-936.
    • (1975) SIAMJ. Math. Anal. , vol.6 , pp. 925-936
    • Peyser, G.1
  • 19
    • 0000380188 scopus 로고    scopus 로고
    • Robustness of exponential dichotomies in infinitedimensional dynamical systems
    • Pliss, V. A., and Sell, G. R. (1999). Robustness of exponential dichotomies in infinitedimensional dynamical systems. J. Dynam. Differential Equations 11, 471-513.
    • (1999) J. Dynam. Differential Equations , vol.11 , pp. 471-513
    • Pliss, V.A.1    Sell, G.R.2
  • 21
    • 0001624408 scopus 로고
    • Existence of dichotomies and invariant splittings for linear differential equations I, II, III
    • 22 (1976), 478-4196; 22 (1976), 497-522.
    • Sacker, R. J., and Sell, G. R. (1974). Existence of dichotomies and invariant splittings for linear differential equations I, II, III. J. Differential Equations 15, 429-4158; 22 (1976), 478-4196; 22 (1976), 497-522.
    • (1974) J. Differential Equations , vol.15 , pp. 429-4158
    • Sacker, R.J.1    Sell, G.R.2
  • 22
    • 0002394599 scopus 로고
    • Dichotomies for linear evolutionary equations in Banach spaces
    • Sacker, R. J., and Sell, G. R. (1994). Dichotomies for linear evolutionary equations in Banach spaces. J. Differential Equations 113, 17-67.
    • (1994) J. Differential Equations , vol.113 , pp. 17-67
    • Sacker, R.J.1    Sell, G.R.2
  • 23
    • 0032443131 scopus 로고    scopus 로고
    • Bounded and almost periodic solutions of linear high-order hyperbolic equations
    • Shirikyan, A. R., and Volevich, L. R. (1998). Bounded and almost periodic solutions of linear high-order hyperbolic equations. Math. Nachr. 193, 137-197.
    • (1998) Math. Nachr. , vol.193 , pp. 137-197
    • Shirikyan, A.R.1    Volevich, L.R.2
  • 24
    • 0038881931 scopus 로고
    • A generalization of a theorem of Lyapunov
    • Taussky, O. (1961). A generalization of a theorem of Lyapunov. J. Soc. Indusl. Appl. Math. 9, 640-643.
    • (1961) J. Soc. Indusl. Appl. Math. , vol.9 , pp. 640-643
    • Taussky, O.1
  • 25
    • 2142790470 scopus 로고    scopus 로고
    • Bounded and almost periodic in time solutions to nonlinear high-order hyperbolic equations
    • Volevich, L. R., and Shirikyan, A. R. (1997). Bounded and almost periodic in time solutions to nonlinear high-order hyperbolic equations. Trans. Moscow Math. Soc. 58, 89-135.
    • (1997) Trans. Moscow Math. Soc. , vol.58 , pp. 89-135
    • Volevich, L.R.1    Shirikyan, A.R.2
  • 26
    • 2142777842 scopus 로고    scopus 로고
    • Exponential dichotomy and exponential splitting for hyperbolic equations
    • Volevich, L. R., and Shirikyan, A. R. (1998). Exponential dichotomy and exponential splitting for hyperbolic equations. Trans. Moscow Math. Soc. 59, 95-133.
    • (1998) Trans. Moscow Math. Soc. , vol.59 , pp. 95-133
    • Volevich, L.R.1    Shirikyan, A.R.2
  • 27
    • 2142779046 scopus 로고    scopus 로고
    • Local dynamics for semilinear hyperbolic equations of high order
    • Volevich, L. R., and Shirikyan, A. R. (2000). Local dynamics for semilinear hyperbolic equations of high order. Izv. Math. 64(3), 439-4185.
    • (2000) Izv. Math. , vol.64 , Issue.3 , pp. 439-4185
    • Volevich, L.R.1    Shirikyan, A.R.2
  • 28
    • 52649098767 scopus 로고    scopus 로고
    • Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Preprint 9, Moscow
    • Volevich, L. R., and Shirikyan, A. R. (1999). Remarks on strongly hyperbolic matrices, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Preprint 9, Moscow.
    • (1999) Remarks on Strongly Hyperbolic Matrices
    • Volevich, L.R.1    Shirikyan, A.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.