-
1
-
-
51249176660
-
Bi-convexity and bi-martingales
-
[AH86]
-
[AH86] AUMANN, R.J., HART, S.: Bi-convexity and bi-martingales. Israel J. Math. 54, 159-180 (1986)
-
(1986)
Israel J. Math.
, vol.54
, pp. 159-180
-
-
Aumann, R.J.1
Hart, S.2
-
2
-
-
0000676180
-
Constitutive inequalities and existence theorems in nonlinear elastostatics
-
[Bal77] Res. Notes in Math., No. 17. Pitman, London
-
[Bal77] BALL, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh 1976) Vol. I. Res. Notes in Math., No. 17. Pitman, London, 1977, pp. 187-241
-
(1977)
Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (Edinburgh 1976)
, vol.1
, pp. 187-241
-
-
Ball, J.M.1
-
3
-
-
0019011063
-
Strict convexity, strong ellipticity and regularity in the calculus of variations
-
[Bal80]
-
[Bal80] BALL, J.M.: Strict convexity, strong ellipticity and regularity in the calculus of variations. Math. Proc. Cambridge Philos. Soc. 87, 501-513 (1980)
-
(1980)
Math. Proc. Cambridge Philos. Soc.
, vol.87
, pp. 501-513
-
-
Ball, J.M.1
-
4
-
-
33750297145
-
Fine phase mixtures as minimizers of energy
-
[BJ87]
-
[BJ87] BALL, J.M., JAMES, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100, 13-52 (1987)
-
(1987)
Arch. Rational Mech. Anal.
, vol.100
, pp. 13-52
-
-
Ball, J.M.1
James, R.D.2
-
6
-
-
0038496367
-
An algebraic characterization of quasi-convex functions
-
[CT93]
-
[CT93] CASADIO TARABUSI, E.: An algebraic characterization of quasi-convex functions. Ricerche Mat. 42, 11-24 (1993)
-
(1993)
Ricerche Mat.
, vol.42
, pp. 11-24
-
-
Casadio Tarabusi, E.1
-
7
-
-
0000184055
-
Quasiconvexity and partial regularity in the calculus of variations
-
[Eva86]
-
[Eva86] EVANS, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95, 227-252 (1986)
-
(1986)
Arch. Rational Mech. Anal.
, vol.95
, pp. 227-252
-
-
Evans, L.C.1
-
8
-
-
0004194874
-
-
[GP74]. Prentice-Hall Inc., Englewood Cliffs, NJ
-
[GP74] GUILLEMIN, V., POLLACK, A.: Differential topology. Prentice-Hall Inc., Englewood Cliffs, NJ, 1974
-
(1974)
Differential Topology
-
-
Guillemin, V.1
Pollack, A.2
-
11
-
-
1542458118
-
Studying nonlinear PDE by geometry in matrix space
-
[KMŠ03], STEFAN HILDEBRANDT & HERMANN KARCHER, (eds.), Springer-Verlag
-
[KMŠ03] KIRCHHEIM, B., MÜLLER, S., ŠVERÁK, V.: Studying nonlinear PDE by geometry in matrix space. In: Gemetric analysis and Nonlinear partial differential equations, STEFAN HILDEBRANDT & HERMANN KARCHER, (eds.), Springer-Verlag, 2003, pp. 347-395
-
(2003)
Gemetric Analysis and Nonlinear Partial Differential Equations
, pp. 347-395
-
-
Kirchheim, B.1
Müller, S.2
Šverák, V.3
-
12
-
-
0242276166
-
Partial regularity of strong local minimizers in the multi-dimensional calculus of variations
-
[KT01]
-
[KT01] KRISTENSEN, J., TAHERI, A.: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Rational Mech. Anal. 170, 63-89 (2003)
-
(2003)
Arch. Rational Mech. Anal.
, vol.170
, pp. 63-89
-
-
Kristensen, J.1
Taheri, A.2
-
14
-
-
0003246772
-
Multiple integrals in the calculus of variations
-
[Mor66], Springer-Verlag New York, Inc., New York
-
[Mor66] MORREY, Jr. C.B.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966
-
(1966)
Die Grundlehren der Mathematischen Wissenschaften
, vol.130
-
-
Morrey Jr., C.B.1
-
15
-
-
0038159405
-
Convex integration for Lipschitz mappings and counterexamples to regularity
-
[MŠ03]
-
[MŠ03] MÜLLER, S., ŠVERÁK, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2) 157, 715-742 (2003)
-
(2003)
Ann. Math. (2)
, vol.157
, pp. 715-742
-
-
Müller, S.1
Šverák, V.2
-
16
-
-
0001636186
-
1 isometric imbeddings
-
[Nas54]
-
1 isometric imbeddings. Ann. Math. (2) 60, 383-396 (1954)
-
(1954)
Ann. Math. (2)
, vol.60
, pp. 383-396
-
-
Nash, J.1
-
17
-
-
0004695490
-
Polycrystalline configurations that maximize electrical resistivity
-
[NM91]
-
[NM91] NESI, V., MILTON G.W.: Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39, 525-542 (1991)
-
(1991)
J. Mech. Phys. Solids
, vol.39
, pp. 525-542
-
-
Nesi, V.1
Milton, G.W.2
-
18
-
-
0000521811
-
Laminates and microstructure
-
[Ped93]
-
[Ped93] PEDREGAL, P.: Laminates and microstructure. Eur. J. Appl. Math. 4, 121-149 (1993)
-
(1993)
Eur. J. Appl. Math.
, vol.4
, pp. 121-149
-
-
Pedregal, P.1
-
20
-
-
0038831167
-
Lower-semicontinuity of variational integrals and compensated compactness
-
[Šve95], Zurich 1994, Birkhäuser, Basel
-
[Šve95] ŠVERÁK, V.: Lower-semicontinuity of variational integrals and compensated compactness. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich 1994), Birkhäuser, Basel, 1995, pp. 1153-1158
-
(1995)
Proceedings of the International Congress of Mathematicians
, vol.1-2
, pp. 1153-1158
-
-
Šverák, V.1
-
21
-
-
0000440966
-
Compensated compactness and applications to partial differential equations
-
[Tar79]. Pitman, Boston, Mass.
-
[Tar79] TARTAR, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math. Pitman, Boston, Mass., 1979, pp. 136-212
-
(1979)
Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Volume 39 of Res. Notes in Math
, vol.4-39
, pp. 136-212
-
-
Tartar, L.1
|