메뉴 건너뛰기




Volumn 10, Issue 1-2, 2004, Pages 117-135

On the fractal dimension of invariant sets: Applications to Navier-Stokes equations

Author keywords

Attractors; Fractal dimension; Navier Stokes equations

Indexed keywords


EID: 2142717291     PISSN: 10780947     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcds.2004.10.117     Document Type: Article
Times cited : (60)

References (27)
  • 3
    • 84990581938 scopus 로고
    • Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for the 2D Navier-Stokes equations
    • P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for the 2D Navier-Stokes equations, Comm. Pure Appl. Math., 38 (1985), 1-27.
    • (1985) Comm. Pure Appl. Math. , vol.38 , pp. 1-27
    • Constantin, P.1    Foias, C.2
  • 5
    • 0005750037 scopus 로고
    • Negatively invariant sets of compact maps and extention of a theorem by Cartwright
    • J. Mallet-Paret, Negatively invariant sets of compact maps and extention of a theorem by Cartwright, J. Diff. Equations, 22 (1976), 331-348.
    • (1976) J. Diff. Equations , vol.22 , pp. 331-348
    • Mallet-Paret, J.1
  • 6
    • 0003290175 scopus 로고
    • On the dimension of the compact invariant sets of certain nonlinear maps
    • Springer-Verlag, New York
    • R. Mãné, On the dimension of the compact invariant sets of certain nonlinear maps, Lecture Notes in Mathematics, vol. 899, Springer-Verlag, New York, 1981.
    • (1981) Lecture Notes in Mathematics , vol.899
    • Mãné, R.1
  • 7
    • 0035341690 scopus 로고    scopus 로고
    • A note on the fractal dimension of attractors of dissipative dynamical systems
    • V.V. Chepyzhov and A.A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Anal. Theory, Methods & Applications, 44 (2001), 811-819.
    • (2001) Nonlinear Anal. Theory, Methods & Applications , vol.44 , pp. 811-819
    • Chepyzhov, V.V.1    Ilyin, A.A.2
  • 8
    • 0033466552 scopus 로고    scopus 로고
    • Estimate for the entropy dimension of the maximal attractor for k-contracting systems in an infinite-dimensional space
    • M.A. Blinchevskaya and Yu.S. Ilyashenko, Estimate for the entropy dimension of the maximal attractor for k-contracting systems in an infinite-dimensional space, Russian Jour, of Math. Phys., 6 (1999), N 1, 20-26.
    • (1999) Russian Jour, of Math. Phys. , vol.6 , Issue.1 , pp. 20-26
    • Blinchevskaya, M.A.1    Ilyashenko, Yu.S.2
  • 9
    • 0040666666 scopus 로고    scopus 로고
    • Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors
    • B.R. Hunt, Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors, Nonlinearity, 9 (1996), 845-852
    • (1996) Nonlinearity , vol.9 , pp. 845-852
    • Hunt, B.R.1
  • 10
    • 0003014302 scopus 로고
    • Attractors of partial differential equations and estimates of their dimension
    • A.V. Babin and M.I.Vishik, Attractors of partial differential equations and estimates of their dimension, Uspekhi Mat. Nauk, 38 (1983), 133-187; English transl, in Russian Math. Surveys, 38 (1983).
    • (1983) Uspekhi Mat. Nauk , vol.38 , pp. 133-187
    • Babin, A.V.1    Vishik, M.I.2
  • 11
    • 2142671836 scopus 로고
    • English transl
    • A.V. Babin and M.I.Vishik, Attractors of partial differential equations and estimates of their dimension, Uspekhi Mat. Nauk, 38 (1983), 133-187; English transl, in Russian Math. Surveys, 38 (1983).
    • (1983) Russian Math. Surveys , vol.38
  • 13
    • 0001989779 scopus 로고
    • On the dynamical system generated by the Navier-Stokes equations
    • O.A. Ladyzhenskaya, On the dynamical system generated by the Navier-Stokes equations, Zap. Nauchn. Sem. LOMI, Leningrad, 27 (1972), 90-114; English transl, in J. of Soviet Math., 3 (1975), 458-479.
    • (1972) Zap. Nauchn. Sem. LOMI, Leningrad , vol.27 , pp. 90-114
    • Ladyzhenskaya, O.A.1
  • 14
    • 34250401659 scopus 로고
    • English transl
    • O.A. Ladyzhenskaya, On the dynamical system generated by the Navier-Stokes equations, Zap. Nauchn. Sem. LOMI, Leningrad, 27 (1972), 90-114; English transl, in J. of Soviet Math., 3 (1975), 458-479.
    • (1975) J. of Soviet Math. , vol.3 , pp. 458-479
  • 15
    • 0000263117 scopus 로고
    • Temam Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations
    • Foias and R.Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl., 58 (1979), 339-368.
    • (1979) J. Math. Pures Appl. , vol.58 , pp. 339-368
    • Foias, R.1
  • 16
    • 0000518664 scopus 로고
    • First boundary value problem for Navier-Stokes equations in domain with non smooth boundaries
    • O.A. Ladyzhenskaya, First boundary value problem for Navier-Stokes equations in domain with non smooth boundaries, C. R. Acad. Sc. Paris, 314, serie 1 (1992), 253-258.
    • (1992) C. R. Acad. Sc. Paris, 314, Serie , vol.1 , pp. 253-258
    • Ladyzhenskaya, O.A.1
  • 17
    • 0030241940 scopus 로고    scopus 로고
    • Attractors for Navier-Stokes equations in domains with finite measure
    • A.A. Ilyin, Attractors for Navier-Stokes equations in domains with finite measure, Nonlinear Anal. Theory, Methods & Applications, 27 (1996), 605-616.
    • (1996) Nonlinear Anal. Theory, Methods & Applications , vol.27 , pp. 605-616
    • Ilyin, A.A.1
  • 18
    • 0002624077 scopus 로고
    • Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities
    • Princeton University Press
    • E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics. Essays in honor of Valentine Bargmann, Princeton University Press (1976), 269-303.
    • (1976) Studies in Mathematical Physics. Essays in Honor of Valentine Bargmann , pp. 269-303
    • Lieb, E.1    Thirring, W.2
  • 19
    • 0002983823 scopus 로고    scopus 로고
    • Sharp Lieb-Thirring inequalities in high dimensions
    • A.Laptev and T.Weidl, Sharp Lieb-Thirring inequalities in high dimensions Acta Mathematica, 184 (2000), 1, 87-111.
    • (2000) Acta Mathematica , vol.184 , pp. 1
    • Laptev, A.1    Weidl, T.2
  • 21
    • 0042046097 scopus 로고
    • Attractors for Navier-Stokes equations
    • R. Temam. Attractors for Navier-Stokes equations, Research Notes in Mathematics, 122 (1985), 272-292.
    • (1985) Research Notes in Mathematics , vol.122 , pp. 272-292
    • Temam, R.1
  • 22
    • 0000251993 scopus 로고
    • On characteristic exponents in turbulence
    • E. Lieb, On characteristic exponents in turbulence, Commun. Math. Phys., 92 (1984), 473-480.
    • (1984) Commun. Math. Phys. , vol.92 , pp. 473-480
    • Lieb, E.1
  • 24
    • 0003744099 scopus 로고
    • English transl., Providence, RI
    • I.Ts. Gohberg and M.G. Krein, "Introduction to the theory of linear non-selfadjoint operators in Hilbert space", Nauka, Moscow, 1965; English transl., Amer. Math. Soc., Providence, RI, 1969.
    • (1969) Amer. Math. Soc.
  • 25
    • 0001056357 scopus 로고
    • On optimal constants in some Sobolev inequalities and their application to a nonlinear Schrödinger equation
    • Sh.M. Nasibov, On optimal constants in some Sobolev inequalities and their application to a nonlinear Schrödinger equation, Dokl. Akad. Nauk SSSR, 307 (1989), 538-542; English transl, in Soviet Math. Dokl. 40 (1990).
    • (1989) Dokl. Akad. Nauk SSSR , vol.307 , pp. 538-542
    • Nasibov, Sh.M.1
  • 26
    • 2142842215 scopus 로고
    • English transl
    • Sh.M. Nasibov, On optimal constants in some Sobolev inequalities and their application to a nonlinear Schrödinger equation, Dokl. Akad. Nauk SSSR, 307 (1989), 538-542; English transl, in Soviet Math. Dokl. 40 (1990).
    • (1990) Soviet Math. Dokl. , vol.40
  • 27
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.
    • (1983) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.