-
6
-
-
84936216199
-
-
[BB4] Barlow, M.T., Bass, R.F.: Transition densities for Brownian motion on the Sierpinski carpet. Preprint 1991
-
-
-
-
10
-
-
0002020217
-
Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals
-
Proc. Symp. Pure Math., Am. Math. Soc., Providence, R.I.
-
(1980)
Geometry of the Laplace operator
, pp. 13-38
-
-
Berry, M.V.1
-
16
-
-
0007465111
-
A fractional dimension, self-similarity and a generalized diffusion operator
-
K., Ito, N., Ikeda, Proc. Taniguchi Intern. Symp., Katata and Kyoto, 1985, Kinokuniya, Toyko
-
(1987)
Probabilistic methods in mathematical physics
, pp. 83-90
-
-
Fujita, T.1
-
17
-
-
84936208556
-
-
[Fj2] Fujita, T.: Some asymptotics estimates of transition probability densities for generalized diffusion processes with self-similar speed measures. Preprint
-
-
-
-
26
-
-
84936178963
-
-
[Ka] Kameyama, A.: Self-similar sets from the topological point of view. Jpn. J. Indust. Appl. (to appear)
-
-
-
-
29
-
-
84936174577
-
-
[Ki3] Kigami, J.: Harmonic metric and Dirichlet form on the Sierpinski gasket. In: Asymptotic problems in probability theory, Elworthy, K.D., Ikeda, N. (eds.), Pitman (to appear)
-
-
-
-
31
-
-
84936188194
-
-
[Km2] Kumagai, T.: Regularity, closedness and spectral dimensions of the Dirichlet forms on p.c.f. self-similar sets. J. Math. Kyoto Univ. (to appear)
-
-
-
-
32
-
-
0002070668
-
A diffusion process on a fractal
-
K., Ito, N., Ikeda, Proc. Taniguchi Intern. Symp., Katata and Kyoto, 1985, Kinokuniya, Tokyo
-
(1987)
Probabilistic methods in mathematical physics
, pp. 251-274
-
-
Kusuoka, S.1
-
36
-
-
0005727771
-
Can one hear the shape of a fractal drum? Partial resolution of the Weyl-Berry conjecture
-
P., Concus, et al., Mathematical Sciences Research Institute Publications, Springer, Berlin, Heidelberg, New York
-
(1991)
Geometric analysis and computer graphics (MSRI, Berkeley, 1988)
, pp. 119-126
-
-
Lapidus, M.L.1
-
37
-
-
77957083459
-
Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function
-
C., Bennewitz, Proc. UAB Intern. Conf. on differential equations and mathematical physics, Birmingham, 1990, Academic Press, New York
-
(1992)
Differential equations and mathematical physics
, pp. 151-182
-
-
Lapidus, M.L.1
-
38
-
-
0000007374
-
Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture
-
B.D., Sleeman, R.J., Jarvis, Proc. Twelvth Intern. Conf. on the theory of ordinary and partial differential equations, Dundee, Scotland, 1992, Research Notes in Mathematics Series, Longman Group UK Limited, London
-
(1993)
Ordinary and partial differential equations
, pp. 126-209
-
-
Lapidus, M.L.1
-
39
-
-
84936211818
-
-
[La5] Lapidus, M.L.: Can one hear the shape of a fractal drum? From the Weyl-Berry conjecture to the Riemann hypothesis. Mathematical Intelligencer (to appear). [Expanded version of a plenary address given at the Regional Meeting of the American Mathematical Society in Tampa, Florida, in March 1991.]
-
-
-
-
42
-
-
84936176287
-
-
[LM2] Lapidus, M.L., Maier, H.: The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc. (to appear)
-
-
-
-
44
-
-
84936172659
-
-
[LP2] Lapidus, M.L., Pomerance, C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66, No. 1, 41–69
-
-
-
-
45
-
-
84936184120
-
-
[LP3] Lapidus, M.L., Pomerance, C.: Spectral zeta-functions and the n-dimensional Weyl-Berry problem for fractal drums (to appear)
-
-
-
-
46
-
-
84936194868
-
-
[Li] Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc. No. 420, 83 (1990)
-
-
-
-
58
-
-
84936172372
-
-
[W1] Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Gött. Nach. 110–117 (1911)
-
-
-
-
59
-
-
0001117305
-
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen
-
(1912)
Math. Ann.
, vol.71
, pp. 441-479
-
-
Weyl, H.1
|