메뉴 건너뛰기




Volumn 158, Issue 1, 1993, Pages 93-125

Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21344480546     PISSN: 00103616     EISSN: 14320916     Source Type: Journal    
DOI: 10.1007/BF02097233     Document Type: Article
Times cited : (242)

References (59)
  • 6
    • 84936216199 scopus 로고    scopus 로고
    • [BB4] Barlow, M.T., Bass, R.F.: Transition densities for Brownian motion on the Sierpinski carpet. Preprint 1991
  • 10
    • 0002020217 scopus 로고
    • Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals
    • Proc. Symp. Pure Math., Am. Math. Soc., Providence, R.I.
    • (1980) Geometry of the Laplace operator , pp. 13-38
    • Berry, M.V.1
  • 17
    • 84936208556 scopus 로고    scopus 로고
    • [Fj2] Fujita, T.: Some asymptotics estimates of transition probability densities for generalized diffusion processes with self-similar speed measures. Preprint
  • 26
    • 84936178963 scopus 로고    scopus 로고
    • [Ka] Kameyama, A.: Self-similar sets from the topological point of view. Jpn. J. Indust. Appl. (to appear)
  • 29
    • 84936174577 scopus 로고    scopus 로고
    • [Ki3] Kigami, J.: Harmonic metric and Dirichlet form on the Sierpinski gasket. In: Asymptotic problems in probability theory, Elworthy, K.D., Ikeda, N. (eds.), Pitman (to appear)
  • 31
    • 84936188194 scopus 로고    scopus 로고
    • [Km2] Kumagai, T.: Regularity, closedness and spectral dimensions of the Dirichlet forms on p.c.f. self-similar sets. J. Math. Kyoto Univ. (to appear)
  • 37
    • 77957083459 scopus 로고
    • Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function
    • C., Bennewitz, Proc. UAB Intern. Conf. on differential equations and mathematical physics, Birmingham, 1990, Academic Press, New York
    • (1992) Differential equations and mathematical physics , pp. 151-182
    • Lapidus, M.L.1
  • 38
    • 0000007374 scopus 로고
    • Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture
    • B.D., Sleeman, R.J., Jarvis, Proc. Twelvth Intern. Conf. on the theory of ordinary and partial differential equations, Dundee, Scotland, 1992, Research Notes in Mathematics Series, Longman Group UK Limited, London
    • (1993) Ordinary and partial differential equations , pp. 126-209
    • Lapidus, M.L.1
  • 39
    • 84936211818 scopus 로고    scopus 로고
    • [La5] Lapidus, M.L.: Can one hear the shape of a fractal drum? From the Weyl-Berry conjecture to the Riemann hypothesis. Mathematical Intelligencer (to appear). [Expanded version of a plenary address given at the Regional Meeting of the American Mathematical Society in Tampa, Florida, in March 1991.]
  • 42
    • 84936176287 scopus 로고    scopus 로고
    • [LM2] Lapidus, M.L., Maier, H.: The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc. (to appear)
  • 44
    • 84936172659 scopus 로고    scopus 로고
    • [LP2] Lapidus, M.L., Pomerance, C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. Lond. Math. Soc. (3) 66, No. 1, 41–69
  • 45
    • 84936184120 scopus 로고    scopus 로고
    • [LP3] Lapidus, M.L., Pomerance, C.: Spectral zeta-functions and the n-dimensional Weyl-Berry problem for fractal drums (to appear)
  • 46
    • 84936194868 scopus 로고    scopus 로고
    • [Li] Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc. No. 420, 83 (1990)
  • 58
    • 84936172372 scopus 로고    scopus 로고
    • [W1] Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Gött. Nach. 110–117 (1911)
  • 59
    • 0001117305 scopus 로고
    • Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen
    • (1912) Math. Ann. , vol.71 , pp. 441-479
    • Weyl, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.