-
1
-
-
84982362896
-
Hüllensysteme und erweiterung von quasi-ordnungen
-
B. Banaschewski, Hüllensysteme und Erweiterung von Quasi-Ordnungen, Z. Math. Logik Grundl., 2 (1956), 117-130.
-
(1956)
Z. Math. Logik Grundl.
, vol.2
, pp. 117-130
-
-
Banaschewski, B.1
-
2
-
-
84968466711
-
Note on Dilworth's decomposition theorem for partially ordered sets
-
D. R. Fulkerson, Note on Dilworth's decomposition theorem for partially ordered sets, Proc. Am. Math. Soc., 7, (1956) 701-702.
-
(1956)
Proc. Am. Math. Soc.
, vol.7
, pp. 701-702
-
-
Fulkerson, D.R.1
-
3
-
-
0013380803
-
Dimension versus size
-
Z. Füredi and J. Kahn, Dimension versus size, Order, 5 (1988), 17-20.
-
(1988)
Order
, vol.5
, pp. 17-20
-
-
Füredi, Z.1
Kahn, J.2
-
4
-
-
30244477445
-
How small can a lattice of dimension n be?
-
B. Ganter, P. Nevermann, K. Reuter and J. Stahl, How small can a lattice of dimension n be? Order, 3 (1987), 345-353.
-
(1987)
Order
, vol.3
, pp. 345-353
-
-
Ganter, B.1
Nevermann, P.2
Reuter, K.3
Stahl, J.4
-
5
-
-
0007224365
-
On the dimension of partially ordered sets
-
T. Hiraguchi, On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ., 1 (1951), 77-94.
-
(1951)
Sci. Rep. Kanazawa Univ.
, vol.1
, pp. 77-94
-
-
Hiraguchi, T.1
-
6
-
-
0041978572
-
On the dimension of partially ordered sets
-
D. Kelly, On the dimension of partially ordered sets, Discr. Math., 35 (1981), 135-156.
-
(1981)
Discr. Math.
, vol.35
, pp. 135-156
-
-
Kelly, D.1
-
7
-
-
0002779102
-
Dimension theory for ordered sets
-
I. Rival (ed.), D. Reidel, Dordrecht
-
D. Kelly and W. T. Trotter, Dimension theory for ordered sets, in: Ordered Sets, I. Rival (ed.), D. Reidel, 1982, Dordrecht, 171-211.
-
(1982)
Ordered Sets
, pp. 171-211
-
-
Kelly, D.1
Trotter, W.T.2
-
9
-
-
0346295610
-
Pertially ordered sets
-
H. M. MacNeille, Pertially ordered sets, Trans. Am. Math. Soc., 42 (1937), 416-460.
-
(1937)
Trans. Am. Math. Soc.
, vol.42
, pp. 416-460
-
-
MacNeille, H.M.1
-
10
-
-
0000508919
-
Zur kennzeichnung der dedekind-Macneilleschen hülle einer geordneten hülle
-
J. Schmidt, Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Hülle, Arch. Math., 7 (1956), 241-249.
-
(1956)
Arch. Math.
, vol.7
, pp. 241-249
-
-
Schmidt, J.1
|