-
2
-
-
0344519547
-
Optimization of the split-step fourier method in modeling optical-fiber communications systems
-
Oleg V. Sinkin, Ronald Holzlöhner, John Zweck, and Curtis Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems" IEEE J. of Lightwave Technol. 21, 61-68 (2003).
-
(2003)
IEEE J. of Lightwave Technol.
, vol.21
, pp. 61-68
-
-
Sinkin, O.V.1
Holzlöhner, R.2
Zweck, J.3
Menyuk, C.4
-
3
-
-
84894012805
-
Higher-order split-step Fourier schemes for generalized nonlinear Schrödinger equation
-
In press
-
G.M. Muslu and H.A. Erbay, "Higher-order split-step Fourier schemes for generalized nonlinear Schrödinger equation" Mathematics and Computers in Simulation (In press).
-
Mathematics and Computers in Simulation
-
-
Muslu, G.M.1
Erbay, H.A.2
-
4
-
-
2442482578
-
Split-step spline method fpr modeling optical fiber communications systems
-
Malin Premaratne, "Split-Step Spline Method fpr Modeling Optical Fiber Communications Systems" IEEE Photon. Technol. Lett. 16, 1304-1306 (2004).
-
(2004)
IEEE Photon. Technol. Lett.
, vol.16
, pp. 1304-1306
-
-
Premaratne, M.1
-
5
-
-
0242270858
-
A fast method for nonlinear Schrödinger equation
-
Xueming Liu and Byoungho Lee, "A Fast Method for Nonlinear Schrödinger Equation," IEEE Photon. Technol. Lett. 15, 1549-1551 (2003).
-
(2003)
IEEE Photon. Technol. Lett.
, vol.15
, pp. 1549-1551
-
-
Liu, X.1
Lee, B.2
-
6
-
-
3142715309
-
Effective algorithms and their applications in fiber transmission systems
-
See also Xueming Liu and Byoungho Lee, "Effective Algorithms and Their Applications in Fiber Transmission Systems" Japanese Journal of Applied Physics, 43, 2492-2500, (2004).
-
(2004)
Japanese Journal of Applied Physics
, vol.43
, pp. 2492-2500
-
-
Liu, X.1
Lee, B.2
-
7
-
-
0001293341
-
-
Eq. (6) is a variant of the so-called Baker-Hausdorff formula. See, for example, G.H. Weiss and A.A. Maraudin, J. Math. Phys, 3, 771-777 (1962).
-
(1962)
J. Math. Phys
, vol.3
, pp. 771-777
-
-
Weiss, G.H.1
Maraudin, A.A.2
-
9
-
-
84894015664
-
-
note
-
2, the "quantum covariance," is given by 〈C〉≤1/ 2〈DN+ND〉-〈D〉〈N〉.
-
-
-
-
10
-
-
84894020080
-
-
note
-
This is a straightforward consequence of Parseval's theorem. In quantum mechanics the Fourier transform of an operator is nothing but the same operator expressed in the conjugate representation. Of course, the QM average value of an observable operator can not depend on the representation.
-
-
-
-
11
-
-
0019584308
-
Beam propagation method: Analysis and assessment
-
J. Van Roey, J. van der Donk, and P.E. Lagasse, "Beam propagation method: analysis and assessment" J. Opt. Soc. Am., 71, 808-810 (1981).
-
(1981)
J. Opt. Soc. Am.
, vol.71
, pp. 808-810
-
-
Van Roey, J.1
Van Der Donk, J.2
Lagasse, P.E.3
-
12
-
-
0002433496
-
Excitation of nonlinear surface waves by Gaussian light beams
-
N.N. Akhmediev, V.I. Korneev, and Yu.V. Kuz'menko, "Excitation of nonlinear surface waves by Gaussian light beams" Sov. Phys. JETP, 61, 62-67 (1985).
-
(1985)
Sov. Phys. JETP
, vol.61
, pp. 62-67
-
-
Akhmediev, N.N.1
Korneev, V.I.2
Kuz'menko, Yu.V.3
-
13
-
-
0001444952
-
A fast spectral algorithm for nonlinear wave equations with linear dispersion
-
B. Fornberg and T.A. Driscoll, "A fast spectral algorithm for nonlinear wave equations with linear dispersion" J. Comp. Phys., 155, 456-467 (1999).
-
(1999)
J. Comp. Phys.
, vol.155
, pp. 456-467
-
-
Fornberg, B.1
Driscoll, T.A.2
-
14
-
-
0001160015
-
Difference schemes for solving the generalized nonlinear Schrödinger equation
-
Q. Chang, E. Jia, and W. Suny, "Difference schemes for solving the generalized nonlinear Schrödinger equation" J. Comp. Phys., 148, 397-415 (1999).
-
(1999)
J. Comp. Phys.
, vol.148
, pp. 397-415
-
-
Chang, Q.1
Jia, E.2
Suny, W.3
|