메뉴 건너뛰기




Volumn 405, Issue 1-3, 2005, Pages 264-278

Numerical computation of minimal polynomial bases: A generalized resultant approach

Author keywords

Matrix fraction description.; Minimal polynomial basis; Polynomial matrices

Indexed keywords

ALGORITHMS; FUNCTIONS; MATHEMATICAL TRANSFORMATIONS; MATRIX ALGEBRA; NUMERICAL ANALYSIS; VECTORS;

EID: 21244460822     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2005.03.017     Document Type: Article
Times cited : (17)

References (23)
  • 1
    • 21244457661 scopus 로고    scopus 로고
    • A numerical method for the computation of proper denominator assigning compensators for strictly proper plants
    • June Rhodes, Greece
    • E.N. Antoniou, A.I.G. Vardulakis, A numerical method for the computation of proper denominator assigning compensators for strictly proper plants, in: Proc. of the 11th IEEE Med. Conference on Control and Automation, June 2003, Rhodes, Greece
    • (2003) Proc. of the 11th IEEE Med. Conference on Control and Automation
    • Antoniou, E.N.1    Vardulakis, A.I.G.2
  • 2
    • 21944439282 scopus 로고    scopus 로고
    • An algorithm for coprime matrix fraction description using Sylvester matrices
    • J.C. Basilio, and B. Kouvaritakis An algorithm for coprime matrix fraction description using Sylvester matrices Linear Algebra Appl. 266 1997 107 125
    • (1997) Linear Algebra Appl. , vol.266 , pp. 107-125
    • Basilio, J.C.1    Kouvaritakis, B.2
  • 3
    • 0023437386 scopus 로고
    • Numerical computation of a coprime factorization of a transfer function matrix
    • T.G. Beelen, and G.W. Veltkamp Numerical computation of a coprime factorization of a transfer function matrix Systems Control Lett. 9 1987 281 288
    • (1987) Systems Control Lett. , vol.9 , pp. 281-288
    • Beelen, T.G.1    Veltkamp, G.W.2
  • 5
    • 0018059393 scopus 로고
    • Greatest common divisors via generalized Sylvester and Bezout matrices
    • R. Bitmead, S. Kung, B. Anderson, and T. Kailath Greatest common divisors via generalized Sylvester and Bezout matrices IEEE Trans. Automat. Control AC-23 6 1978 1043 1047
    • (1978) IEEE Trans. Automat. Control , vol.AC-23 , Issue.6 , pp. 1043-1047
    • Bitmead, R.1    Kung, S.2    Anderson, B.3    Kailath, T.4
  • 8
    • 0016508669 scopus 로고
    • Minimal bases of rational vector spaces with application to multivariable linear systems
    • G.D. Forney Minimal bases of rational vector spaces with application to multivariable linear systems SIAM J. Control 13 1975 293 520
    • (1975) SIAM J. Control , vol.13 , pp. 293-520
    • Forney, G.D.1
  • 10
    • 0003644739 scopus 로고
    • A stable and fast algorithm for updating the singular value decomposition
    • Yale University, New Haven, CT
    • M. Gu, S.C. Eisenstat, A Stable and Fast Algorithm for Updating the Singular Value Decomposition, Research Report YALEU/DCS/RR-966, Yale University, New Haven, CT, 1994
    • (1994) Research Report , vol.YALEU-DCS-RR-966
    • Gu, M.1    Eisenstat, S.C.2
  • 11
    • 0003792312 scopus 로고
    • Prentice Hall Englewood Cliffs, NJ
    • T. Kailath Linear systems 1980 Prentice Hall Englewood Cliffs, NJ
    • (1980) Linear Systems
    • Kailath, T.1
  • 12
    • 21344498479 scopus 로고
    • Minimal bases of matrix pencils: Algebraic Toeplitz structure and geometric properties
    • N. Karcanias Minimal bases of matrix pencils: Algebraic Toeplitz structure and geometric properties Linear Algebra Appl. 205-206 1994 831 868
    • (1994) Linear Algebra Appl. , vol.205-206 , pp. 831-868
    • Karcanias, N.1
  • 13
    • 0036723572 scopus 로고    scopus 로고
    • Minimal bases of matrix pencils and coprime fraction descriptions
    • N. Karcanias, and M. Mitrouli Minimal bases of matrix pencils and coprime fraction descriptions IMA J. Control Inform. 19 2002 245 278
    • (2002) IMA J. Control Inform. , vol.19 , pp. 245-278
    • Karcanias, N.1    Mitrouli, M.2
  • 14
    • 21244493662 scopus 로고    scopus 로고
    • On some properties of the minimal-in-degree irreducible factorizations of a rational matrix
    • V.B. Khazanov On some properties of the minimal-in-degree irreducible factorizations of a rational matrix J. Math. Sci. 114 6 2003 1860 1862
    • (2003) J. Math. Sci. , vol.114 , Issue.6 , pp. 1860-1862
    • Khazanov, V.B.1
  • 16
    • 4243558881 scopus 로고    scopus 로고
    • Proper solutions of polynomial equations
    • Elservier Science, London
    • V. Kucera, P. Zagalak, Proper solutions of polynomial equations, in: Proc. of the 14th World Congress of IFAC, Elservier Science, London, 1999, pp. 357-362
    • (1999) Proc. of the 14th World Congress of IFAC , pp. 357-362
    • Kucera, V.1    Zagalak, P.2
  • 17
    • 21244479041 scopus 로고
    • Rank division algorithms and their applications
    • V.N. Kublanovskaya Rank division algorithms and their applications J. Numer. Linear Algebra Appl. 1 2 1992 199 213
    • (1992) J. Numer. Linear Algebra Appl. , vol.1 , Issue.2 , pp. 199-213
    • Kublanovskaya, V.N.1
  • 18
    • 21144468310 scopus 로고
    • Column reduction of polynomial matrices
    • W. Neven, and C. Praagman Column reduction of polynomial matrices Linear Algebra Appl. 188-189 1993 569 589
    • (1993) Linear Algebra Appl. , vol.188-189 , pp. 569-589
    • Neven, W.1    Praagman, C.2
  • 20
    • 0029327517 scopus 로고
    • Generalized state-space realizations from matrix fraction descriptions
    • D. Vafiadis, and N. Karcanias Generalized state-space realizations from matrix fraction descriptions IEEE Trans. Automat. Control 40 6 1995 1134 1137
    • (1995) IEEE Trans. Automat. Control , vol.40 , Issue.6 , pp. 1134-1137
    • Vafiadis, D.1    Karcanias, N.2
  • 23
    • 0020738054 scopus 로고
    • Design of unity feedback systems to achieve arbitrary denominator matrix
    • S.-Y. Zhang, and C.-T. Chen Design of unity feedback systems to achieve arbitrary denominator matrix IEEE Trans. Automat. Control AC-28 4 1983 518 521
    • (1983) IEEE Trans. Automat. Control , vol.AC-28 , Issue.4 , pp. 518-521
    • Zhang, S.-Y.1    Chen, C.-T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.